Exhibit 3.0 Documentation

Welcome to Exhibit 3.0. This documentation is also available on the Exhibit 3.0
documentation wiki at http: //www.simile-widgets.org/wiki/Exhibit3 where you can find
and update the content for the life of the project.

Table of Contents

Exhibit 3.0 DOCUMENTAtiON ... asass 1
What is EXhibit 3.07 ... sssssssssssssssssssssssssssases 2
What’s New in EXhibit 3.07..... s sssssssssssssssssssssssssssssssssasssssasass 4
Choosing Between Exhibit 3.0 Scripted and Staged ... 5
Differences in Functionality: Scripted vs. Staged Mode..........ccounnnmnnnnmnnssmnsssssns 5
Feature Map: What’s Supported in Exhibit 2 and Exhibit 3.07?.......ccccoiirnrmsnssssssmsmsnssssssnannns 7
Feature Map for Exhibit 3.0 Scripted........ s ssssassssss 10
Installing and Setting Up ExXhibit 3.0.......cccoonssssssssssssss s ssssssssssssssssssses 15
Installing Exhibit 3.0 SCripted ... ———————— 15
Installing Exhibit 3.0 Staged ... s ssassssssasees 18
Getting Started with Exhibit 3.0 Scripted........s—————— 22
Your EXhibit Data........commmmsmmssmsssssssssssssssssssssssssssssss s ssssssssssssssssssssssssasssasas 41
What’s New in EXhibit 3.07.....commimsnssses 41
Importing Data Into Your EXhibit ... 43
Creating, Importing, and Managing Data...........cccmmmnmmssssssssssssss 44
Understanding an Exhibit Database.........cc————— 47
Authoring Your EXhibits.......ccmssasss 53
Using Views, Facets, and Lenses in Your Exhibits ... 61
Lo 61
- T = 64
=T 0= - 65

Exhibit Developer Documentation

See the developer documentation for Exhibit developers who want to customize or examine
how Exhibit code works.

Developer Doc for Exhibit 3.0:

https://github.com/zepheira/exhibit3 /wiki

Developer Doc for Backstage and Exhibit 3.0 Staged Mode:
https://github.com/zepheira/backstage /wiki

http://www.simile-widgets.org/wiki/Exhibit3
http://www.simile-widgets.org/wiki/Exhibit3
http://www.simile-widgets.org/wiki/Exhibit3
https://github.com/zepheira/exhibit3/wiki
https://github.com/zepheira/backstage/wiki

Exhibit 3.0

Publishing Framework for Large-Scale Data-Rich Interactive Web Pages

Exhibit 3.0 is a powerful yet easy-to-use open source publishing framework for
large-scale data-rich interactive web pages.

Building on the success of the original Exhibit, version 3.0 lets you easily create
web pages to publish and visualize data collections ranging from small personal
collections in Scripted mode, up to large data sets in the server-based Staged

mode.

Exhibit 3.0 Scripted (rc1): With Exhibit 3.0 Scripted mode, you can
visualize data in a Web browser with a simple HTML-based configuration.
No programming or server-side set up required.

Exhibit 3.0 Staged (beta2): Staged mode requires the use of server
software to publish bigger data sets.

What is Exhibit 3.07?

Exhibit 3.0 lets you publish data-rich web pages without complicated
programming:

Free, no cost

Easy to use — No programming skills required

Open source platform — Get involved, share your expertise, write code
or add a demo

Scalability — Staged mode scales to hundreds of thousands of items
Lightweight publishing framework for building interactive web pages of
linked data

Supports search (Scripted mode), faceted navigation, interactive
displays

Easy to reconfigure and extend

Supports customized data display

Scripted Mode for Publishing Smaller Data Sets in the Browser
Exhibit 3.0 Scripted is designed for smaller data sets — for publishing rich interactive
exhibits, with thousands of items, right in your Web browser.

Download + Install | User Documentation and Tutorial | Developer Documentation

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://www.simile-widgets.org/exhibit/
https://github.com/zepheira/exhibit3/
http://simile-widgets.org/wiki/Exhibit3
https://github.com/zepheira/exhibit3/wiki

Staged Mode Offers Scalability with Simplicity

Exhibit 3.0 Staged mode extends the capacity of Exhibit by combining the in-browser
software with greater capacity of a server-based component. The server stores and
indexes data, and handles browser queries.

Download + Install | Developer Documentation

Getting Involved in the Exhibit Community

As an open source project, Exhibit relies on code and ideas from the community. Meet
other exhibit users and developers on IRC on freenode, or browse the SIMILE Widgets
mailing list archives to ask or answer questions with other Exhibit users. Chances are
others may have similar questions, and the list is a great place to share answers.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/backstage/
https://github.com/zepheira/backstage/wiki
irc://irc.freenode:6667/#exhibit3
http://groups.google.com/group/simile-widgets
http://groups.google.com/group/simile-widgets

What’s New in Exhibit 3.0?

Exhibit 3.0 offers a powerful, easy-to-use publishing framework for building large-scale,
data-rich, interactive web pages.

Building on the success of Exhibit 2, the new version offers two modes:
Exhibit 3.0 Scripted (rc1) for smaller in-browser data sets
Exhibit 3.0 Staged (beta) built on Backstage, for much bigger server-based data sets

Exhibit remains free, open source software that's easy to use. Highlights of the new release
include:

Exhibit 3.0 Scripted (rc1):

= Browse thousands of items

= New HTML5 configuration language, with backwards compatibility for prior
configuration language

= New localization system (no more 404's)

= New history system (no more __history__.html)

= Updated libraries, including jQuery

= Removal of external or unconfigurable service dependencies within the core

* Implements most core views and facets and some popular extension views

= More developer friendly, including a new event-driven API, basic tests, and
documentation

= Persistence: Pick up where you left off browsing an Exhibit

= Bookmarks: Share exactly what you see with others

Exhibit 3.0 Staged (beta2):

= Scalability: Browse hundreds of thousands of items
= Persistence: Pick up where you left off browsing an Exhibit
= Exportdatain HTML + RDFa format

This section explains how to choose which mode of Exhibit 3.0 is right for you and maps
feature differences between Exhibit 2 and Exhibit 3.0.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

Choosing Between Exhibit 3.0 Scripted and Staged

This section explains some of the differences between the Scripted and Staged modes of
Exhibit to help you choose which is right for you.

Generally speaking, the size of your data set will determine whether you choose to use the
Scripted or Staged mode of Exhibit 3.0.

Exhibit 3.0 Scripted: In-Browser Scripts
Smaller data sets numbering a few dozen, a few hundred, or up to a thousand items
can run in the browser using the Scripted mode of Exhibit. There is no set item limit
for Scripted mode. If your data set has smaller items with few properties and short
values, you may find Scripted mode handles a few thousand smaller items.

No programming is required beyond the basic HTML you use to author an Exhibit
page.

Exhibit 3.0 Staged: Server-Based
Larger data sets - up to hundreds of thousands of items - are better suited to Staged
mode.

Running Staged mode requires that you host the server software yourself or locate a
provider who can host it for you.

Differences in Functionality: Scripted vs. Staged Mode

The Scripted and Staged modes share some of the same features. Differences in functionality
are listed below. Differences in functionality between Scripted and Staged mode may affect
your choice of which mode is best for your application.

Note: Features not listed here do not carry over from Scripted to Staged.

Views

Exhibit 3.0 Staged includes the Tile View, but it will only show the first twenty items at a
time. None of the controls for sorting fields, sort order, or grouping are available. A
pagination feature is expected to be developed soon.

Facets

Exhibit 3.0 Staged implements the List Facet, but any facet value with a count of one will be
omitted.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

Lens Language

Exhibit 3.0 Staged implements a subset of the lens language and recognizes the following
lens attributes:

* if-exists

®* *-content

¢* *-subcontent

* *-style-content

* *-style-subcontent

Expression Language

Some of the Exhibit expression language is implemented in Exhibit 3.0 Staged:
* Forward segments (.)

* Backward segments (!)
e if

* if-exists

Collections

Exhibit 3.0 Staged allows for subsets of the contents of its database to be grouped into
collections, based on the following divisions:
e All items (default)

* Only items of one certain rdf: type

To learn more about Exhibit 3.0 Staged, see the Exhibit developer documentation on GitHub.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/backstage/wiki/_pages

Feature Map: What’s Supported in Exhibit 2 and
Exhibit 3.07?

For existing Exhibit users and developers, the following table compares the features
supported in Exhibit 3.0 and the previous release, Exhibit 2.2.0. This list will be updated as
new features are developed.

Some of the features are marked as "no plans to implement" which suggests members of
the Exhibit community may want to develop and deploy them as Exhibit 3.0 extensions.
They are not likely to be included in the core of Exhibit 3.0, but discussion is welcome. Join
the conversation on the SIMILE Widgets mailing list.

General Notes for Exhibit 2 Users
The expression language remains the same between Exhibit 2 and Exhibit 3.0.

Once you've installed and set up the new Exhibit 3.0 scripts on your Web server, your
existing exhibits should display without modification. See the notes below for some special
considerations to keep in mind when you start using Exhibit 3.0.

Note About Exhibit 3.0 Staged (beta)

Exhibit 3.0 Staged allows for much larger data sets but does not support all the features from
Exhibit 2 or even all the features from Exhibit 3.0 Scripted mode. See the list of differences in
functionality between Scripted and Staged modes for more details.

New Exhibit 3.0 Release URL
With Exhibit 2, you did not have to install a local set of Exhibit files if you called Exhibit from

the simile-widgets.org site. The URL has been updated for Exhibit 3.0 Scripted:
http://api.simile-widgets.org/exhibit/3.0.0rcl/exhibit-api.js.

Alternatively, you can download and set up Exhibit 3.0 Scripted on your Web server instead.
See the install instructions.

Validate Your JSON Data First

Exhibit 3.0 uses native browser JSON libraries that implement a much stricter
implementation of the JSON specification. A one-off extension to upgrade JSON was added to
the selection of Exhibit extensions.

Otherwise, you may need to run your existing Exhibit JSON through [SONIint to re-qualify it
for use with Exhibit 3.0

Change Your Exhibit Data Link Format
Change <link rel="exhibit/data" /> to <link rel="exhibit-data" />.
The former use, with (/), is deprecated and will cease to work in future versions.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://groups.google.com/group/simile-widgets
https://github.com/zepheira/exhibit3/issues/37
http://jsonlint.com/

Using Babel
Babel is a data translation service. There are some important changes in this release to how
Exhibit works with Babel.

Supply a URL: If you use Babel for data translation, you must supply a URL to Babel by
appending "babel=<url>" to your exhibit-api.js script tag.

Babel Usage Note (Optional): If you rely on Babel (RDF/XML, N3, Excel, an Exhibit page,
KML, JPEG, TSV importers), consider running Babel yourself, or download the transformed
data if you don't need to actively transform the original data. Or you may want to consider
maintaining the data in a format that doesn’t depend on Babel.

Babel may not be provided as a public service in the future.

Using jQuery
If you are using jQuery, you may not need to load it separately.
Exhibit loads jQuery 1.7.1. It will not load it if jQuery is detected.

HTMLS
If you are using HTML5 with Exhibit, you should update your configuration language to the
HTML5-compatible version in order to maintain valid HTMLS5.

The Exhibit attribute-based configuration has changed for HTML5. A compatibility mode
remains for Exhibits in XHTML files. HTML5 does not support XML namespaces, providing a
new custom attribute mode in its stead. Moving from Exhibit 2.2.0 in XHTML to Exhibit 3.0 in
HTMLS5 requires changing all attributes prefixed with ex: to be prefixed with data-ex-
instead.

In addition, all capital letters within the attribute name should be converted to a hyphen and
lower case, e.g., ex: itemTypes becomes data-ex-item-types. The HTML5 data attribute
API treats capitalization differently during document processing and when attribute access
occurs, necessitating the change to hyphenation.

See the Authoring section for more info on using Exhibit with HTML5.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

Views: Toolbox Parameter
In Exhibit 3.0, the semantics of the toolbox parameter for views (ex:showToolbox, or data-ex-
show-toolbox for HTML5) have been unified. All views now have ex:showToolbox, a boolean,

set to true by default. The toolbox is displayed by default, so you don’t need to hover with the
mouse to reveal it.

A new parameter (ex:toolboxHoverReveal), a boolean, set to false by default, will restore the
old behavior of hovering to see the toolbox. See the section on Views for more information.

New Control Panel
A new component, the control panel, was added to Exhibit 3.0 to contain Exhibit-wide
widgets, like the new Bookmarking widget.

History File
Younolongerneeda history .html file to accompany your Exhibit files.

Your Exhibit Code Customizations
If you wrote your own code to extend, augment, or supplant Exhibit 2 code, you almost
certainly will have to re-examine how it operates for Exhibit 3.0.

See the developer documentation for more information on customizing and extending
Exhibit 3.0.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/exhibit3/wiki/Developer-Scripted-API

Feature Map for Exhibit 3.0 Scripted

Examine these lists of Exhibit features to make sure the features you currently use in
Exhibit 2.x have been adapted for Exhibit 3.0. This list will change over time, as more
features are rewritten for Exhibit 3.0, so check back often.

Views

Some Exhibit 2.x views are not (yet) available in Exhibit 3.0. This table shows which Views
are implemented in Exhibit 3.0.

Exhibit 2.2.0 feature Exhibit 3.0 status

Tile Fully implemented

Tabular Fully implemented

Thumbnail Fully implemented

Timeline Extension Fully implemented

Map Extension In progress

Chart Extension Not yet implemented

Timeplot Extension Not yet implemented

Calendar Extension Not yet implemented

Editing Hooks provided, view not yet implemented

See the Views documentation for more information on Exhibit views.

Facets

Some Facets available in Exhibit 2.x are not (yet) implemented in Exhibit 3.0.

Exhibit 2.2.0 feature Exhibit 3.0 status
List Fully implemented
Cloud Fully implemented
Text Search Fully implemented

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved m

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

Numeric Range

Alphabetic Range

Fully implemented

Fully implemented

Hierarchical Fully implemented
Slider See below’
Image No plans to implement

(1) The Slider Facet can probably be better implemented using new elements available in
HTMLS5. The pre-HTMLS version may be made available as a backwards compatibility
headed towards deprecation. This will not take place during the initial phases of Exhibit 3.0
development.

See the Facets documentation for information on sorting, filtering, and searching data with
facets.

Exporters

Exhibit 2.2.0 feature Exhibit 3.0 status

Exhibit JSON Fully implemented

RDF/XML Fully implemented

Semantic MediaWiki Fully implemented

Tab-Separated Values Fully implemented

BibTeX Fully implemented

Made obsolete by new bookmarking

Facet Selection URL
system

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved m

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

Importers

Exhibit 2.2.0 feature Exhibit 3.0 status
Exhibit JSON Fully implemented
Google Spreadsheet Fully implemented
Generic JSONP Framework Fully implemented
Babel-based' Fully implemented?
Generic JSON Framework No plans to implement
Generic XML Framework No plans to implement
Generic HTML Table Framework No plans to implement3
RDFa No plans to implement*

(1) Babel-based importers include BibTeX, Excel spreadsheet, Exhibit JSON, Exhibit page,
JPEG, N3, RDF/XML, Tab-Separated Values.

(2) While Babel-based importers are fully implemented, users must now supply a Babel
installation URL to their Exhibit in order to take advantage of Babel's import Web service.
Note that the public Babel services formerly provided by previous SIMILE project member
organizations may be turned off in the future.

(3) The Exhibit 2.2.0 Generic HTML Table Framework for importing relied on an XPath
content extractor built into Babel and faces the same Babel caveats for running it
successfully.

(4) The RDFa importer loaded an externally-hosted script from within itself. This qualifies it
for being an extension instead.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

Widgets

Exhibit 2.2.0 feature Exhibit 3.0 status
Toolbox Fully implemented
Exhibit Logo Fully implemented
Resizable Element Fully implemented
Options Fully implemented
Collection Summary Fully implemented
Legend Fully implemented
Legend Gradient Removed'

Bookmark New to Exhibit 3.0

History Reset Development Tool New to Exhibit 3.0

1) The Legend Gradient widget does not appear to have been in reasonable working
order in Exhibit 2.2.0 and was removed.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved m

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

Localization

The localization system has changed significantly. All locales require a new key-value set to
work. While all localizations have been converted to the new system, some new keys were
introduced that could use some translation, and some of the old keys were never properly
translated before. While those cases will still display in English, please let us know if you can
help provide a translation.

Exhibit 2.2.0 locale Exhibit 3.0 status

English (en) Fully implemented
French (fr) Fully converted
German (de) Fully converted
Spanish (es) Fully converted
Dutch (nl) Fully converted
Norwegian (no) Fully converted
Swedish (sv) Fully converted

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

Installing and Setting Up Exhibit 3.0

This section includes instructions on installing and setting up Exhibit 3.0 for both Scripted
and Staged modes.

See the section Choosing Between Exhibit 3.0 Scripted and Staged if you need help deciding
which version is right for you.

Exhibit 3.0 Scripted: Installation and Setup

Exhibit Authors or Content Publishers: You do not need to install anything. Simply include

the scripts hosted at simile-widgets.org in your page:
<script src="http://api.simile-widgets.org/exhibit/3.0.0rcl/exhibit-api.]js"
type="text/javascript"></script>

Exhibit Developers: Download and run Exhibit locally on your web server as described
below.

Installing Exhibit 3.0 Scripted

[Check the developer documentation wiki for up-to-date installation instructions:
https://github.com/zepheira/exhibit3 /wiki/Installation]

Developers interested in working on Exhibit 3.0 Scripted can follow these directions to get
their environment set up.

Exhibit authors do not need to install the Exhibit developer environment. See the note above
about running Exhibit against a central Exhibit server.

Requirements

= Any HTTP server

A standard Web browser with Web development mode tools (Internet Explorer, Google
Chrome, Mozilla Firefox, Safari)

= (it

GitHub account (optional)

Java (optional)

Ant (optional)

= JSCoverage (optional)

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/exhibit3/wiki/Installation
http://book.git-scm.com/2_installing_git.html
https://github.com/signup
https://www.java.com/en/
https://ant.apache.org/
http://siliconforks.com/jscoverage/

Depending on your operating system, you may already have an HTTP server at your disposal.
Mac OS X and many variants of Linux include one. If you are unfamiliar with how to acquire
and use one, development on Exhibit may not be for you.

Acquiring the Code

If you're planning to contribute your work back to the Exhibit open source project, consider
getting a GitHub account so you can fork the project and issue pull requests later to fold your
changes back into the main branch.

You can get the code by viewing the project front page and using your preferred method of
Git access to clone the main repository. For example, for read only access:

% git clone git://github.com/zepheira/exhibit3.git

Serving Code

From within the repository, the code that needs to be served can be found at scripted/src/.
Making the entire scripted/src/ directory available from your HTTP server is sufficient.
Access your deployed Exhibit in your pages by using:

<script src="http://yourserver/scripted/src/exhibit-
api.js?bundle=false"></script>

Using the bundle=false parameter is highly recommended, unless you are testing the
bundled mode of operation. Use shift+reload to make sure you're loading the latest scripts in
your browser.

Making Changes

As you make changes to the code, make sure to test how your changes affect the project as a
whole. Use

o)

s ant test

from the command line to run the existing unit test suite as well as lint for JavaScript code
style checking. To test just one module, use:

o)

% ant -Dmodules='[space separated list]' qunit

Unit tests do not cover user interaction. The project doesn’t have a solution for integration
tests right now. Check the Exhibit demos or check your own work across browsers to make
sure your changes haven’t had a negative impact on the full experience.

All commits are run through a continuous integrator, which will alert the development team
to any problems with unit tests on the main branch.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/exhibit3
http://databench.zepheira.com/demos/
https://ci.zepheira.com/job/test_exhibit3/

Documentation

We use JSDocToolkit in-code documentation to produce some of our API documents.

More Tests

The Exhibit project can always use more tests. Using J[SCoverage, you can see how much of
the code is actually tested by our test suite and find precise lines of code that still need some
testing to ascertain and maintain correctness. With J[SCoverage installed, you can run this
code to generate a coverage report:

o)

% ant coverage

Next Steps

Now that your environment is set up, you should read the following sections of developer
doc for Exhibit 3.0 Scripted mode on the wiki at GitHub:

= Component overview of the way Exhibit fits together

» Generated API documentation (Javadoc)

= Reader-oriented API doc for developers working in Exhibit 3 Scripted mode
= Event API doc for Scripted mode

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://code.google.com/p/jsdoc-toolkit/wiki/TagReference
https://github.com/zepheira/exhibit3/wiki/Component-Overview
https://ci.zepheira.com/job/test_exhibit3/javadoc/
https://github.com/zepheira/exhibit3/wiki/Developer-Scripted-API
https://github.com/zepheira/exhibit3/wiki/Scripted-Event-API

Installing Exhibit 3.0 Staged

[Check the developer doc wiki for up-to-date installation instructions:
https://github.com/zepheira/backstage/wiki/Building-backstage]

Exhibit 3.0 Staged runs on the Backstage server. Working with Backstage is not as simple as
working with Exhibit Scripted. In addition to HTML and publishing Web pages, Backstage is
Java software that acts as a server.

If you're not familiar with Java development, this may not be the project for you to start that
learning curve. If you're a content publisher and want to run the server, consider getting
some help from a developer to set up the server software, or locate a hosting service to
install and manage your exhibits.

Building Backstage

Requirements

You will need all of the following installed on your development system.

= Installing Git

= Installing SVN

= Installing Java 6

= Installing Maven 2
= Installing Ant

Exhibit Installation

Get the source:

mkdir ~/e3src && cd ~/e3src

git clone git://github.com/zepheira/babel.git

git clone git://github.com/zepheira/backstage.git

git clone git://github.com/zepheira/exhibit3.git

svn checkout http://simile-butterfly.googlecode.com/svn/trunk/ butterfly

Ly U > Uy U

Run the build commands:

cd babel && mvn install

cd ../butterfly && mvn install && ant build
cd ../exhibit3/scripted && ant dist

cd ../../backstage && mvn package

Uy U U 0

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/backstage/wiki/Building-backstage
http://book.git-scm.com/2_installing_git.html
http://svnbook.red-bean.com/en/1.1/ch01s05.html
http://www.oracle.com/technetwork/java/javase/index-137561.html
http://maven.apache.org/download.html
http://ant.apache.org/manual/install.html

Connect the Exhibit 3 scripts to the Web server:

$ cd ../backstage && 1ln -s ~/e3src/exhibit3/scripted/dist modules/exhibit/api

Configuration Procedures
Backstage

The startup script exists at ~/e3src/backstage/backstage and contains several
configuration settings:

= MXMEM specifies the maximum Java heap size. The correct value here depends on
several factors including the number and size of data sets, the number of facets in the
hosted exhibits, the choice of disk- or memory-based database, as well as uniqueness
qualities and size of the faceted properties. Start with the default setting of 1024M
and increase it as required, when you run into a Java OutOfMemoryError.
Note: For the Backstage demos, we observed that each new 100K item data set and
two-facet exhibit using a memory-based database, required an additional 1.5G of
heap.

= set HOST and PORT to your publicly accessible host and port information. Backstage
uses this information to determine your mount point (which can be overridden using
the SERVER_ROOT variable), which is in turn used as the base URL for any uploaded
data sets.

= set DATABASE_DIR to the directory where the databases corresponding to the
uploaded data sets are to be stored. A non-absolute path is interpreted relative to the
Butterfly home, and the default is simply "databases" (or
~/e3src/butterfly/databases)

Web Server

Backstage is developed as a Butterfly application and deployed in a Jetty servlet container

which can be configured via its web . xm1 file, ~/e3src/butterfly/main/webapp/WEB-
INF/web.xml.

One setting of interest for Backstage is the session timeout. The lifetime of a Backstage
session, which contains in-memory database, is also determined by this value. If the data
export feature isn't used, the in-memory database is removed from memory after the session
times out.

The following addition to web-app root of the web.xml document specifies a session timeout
of 1440 minutes (1 day):

<session-config>
<session-timeout>1440</session-timeout>
</session-config>

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

Execution
Once configured, run:

$./backstage

Authoring Exhibits in Staged Mode

Now you’ve set up Backstage. Your next step is to author the HTML pages that publish your
exhibit. Note that the Backstage server is not intended to host your authored HTML. With
Staged mode, you will still require your own Web server to host your Exhibit HTML.

See the Exhibit Authoring documentation for details.

Next Steps

Developers running Exhibit 3.0 Staged mode should read the documentation at GitHub
specific to Staged mode:

Exhibit Staged Mode: Authoring
Backstage Documentation

HTTP Interface

Comparing Staged Exhibit to Scripted

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

20

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/backstage/wiki/Authoring
https://github.com/zepheira/backstage/wiki/_pages
https://github.com/zepheira/backstage/wiki/Authoring
https://github.com/zepheira/backstage/wiki
https://github.com/zepheira/backstage/wiki/HTTP-Interface
https://github.com/zepheira/backstage/wiki/Staged-Compared-to-Scripted

21

Additional Resources
Here are some additional resources from an Exhibit user. They may be helpful if you're
installing Exhibit for the first time:
= http://progit.org/book/ch1-3.html
= http://www.jonathansewell.co.uk/index.php/2011/01/06/setting-up-git-in-
windows-7/ (Windows)
= http://lostechies.com/jasonmeridth/2009/06/01/git-for-windows-developers-git-
series-part-1/ (Windows)
= Installing msysgit for Windows: http://code.google.com/p/msysgit/
» Information on setting up Git (Windows): http://help.github.com/win-set-up-git/
= http://mac.github.com/ (Mac)

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://progit.org/book/ch1-3.html
http://www.jonathansewell.co.uk/index.php/2011/01/06/setting-up-git-in-windows-7/
http://www.jonathansewell.co.uk/index.php/2011/01/06/setting-up-git-in-windows-7/
http://lostechies.com/jasonmeridth/2009/06/01/git-for-windows-developers-git-series-part-1/
http://lostechies.com/jasonmeridth/2009/06/01/git-for-windows-developers-git-series-part-1/
http://code.google.com/p/msysgit/
http://help.github.com/win-set-up-git/
http://mac.github.com/

22

Getting Started with Exhibit 3.0 Scripted

Exhibit publishes your data collections on the Web in rich, interactive pages. Exhibit 3.0 has
two modes: Scripted mode for running smaller exhibits and Staged mode for larger, server-
based exhibits.

This tutorial walks you through the basic steps for creating a simple exhibit in Scripted
mode. This example uses XHTML. To see Exhibit 3.0 running with HTML5, see the demo

server.

For details on running Staged mode, see the developer documentation on GitHub.

The Basics
Publishing data with the Scripted mode of Exhibit is very simple. You need three basic
components.

= Connection to Exhibit scripts either remotely or on your own Web server

= Data file containing your data, in JSON format (more on that later)

= HTML page that calls the Exhibit scripts and displays your page content when
loaded in the browser

Tutorial: Creating an Exhibit with Scripted Mode

Let’s dive right in. First, you'll build the HTML and data files Exhibit uses to publish data.
After you've published an Exhibit, you can refine how the page displays, see which display
options work best for you, and tweak the page design as needed.

We assume you know some basic HTML. We’ll use sample code and data about MIT’s Nobel

Prize winners, but you can also substitute your own data. If you get lost or need help along
the way, see the finished HTML file at the end of the tutorial.

Creating Your HTML Page
Start with a basic text editor (Notepad on Windows or TextEdit on the Mac).

e Create an HTML file in your text editor.
e Ifyou’re following our demo example, copy this text and name the file nobelists.html.

http://api.simile-widgets.org/exhibit/3.0.0rc1/exhibit-api.js

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://databench.zepheira.com/demos/
http://databench.zepheira.com/demos/
https://github.com/zepheira/backstage/wiki

23

Sample Exhibit HTML Text

<html>
<head>
<title> Exhibit | Examples | MIT Nobel Prize Winners</title>

<link href="nobelists.js" type="application/json" rel="exhibit-data" />
<!-- Replace the URL here with your Exhibit 3.0 script location -->

<script src="http://api.simile-widgets.org/exhibit/3.0.0rcl/exhibit-api.]js"
type="text/javascript"></script>
<style>
</style>
</head>
<body>
<div id="main-content">
<div id="title-panel">
<h1>63 MIT-related Nobel Prize Winners</hl>
</div>

<div id="top-panels">
<table width="100%"><tr>
Facets for sorting and browsing go here</tr></table>
</div>

<div ex:role="viewPanel" style="padding: lem 0.5in;">

<div ex:role="view"
ex:label="Details"
ex:viewClass="Tile"
ex:showAll="true"
</div>

</td>
</tr>
</table>
</table>

</body>
</html>

In highlighted code:

(1) Yellow points to your data file, named nobelists.js, identifies it as JSON format, and
declares that it contains the data for this exhibit.

(2) Blue describes where to find the Exhibit JavaScript needed to run Exhibit:
http://api.simile-widgets.org/exhibit/3.0.0rc1/exhibit-api.js

(3) Green shows the Exhibit codes that publish a basic view of your data.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

24

This is the most basic HTML text for an Exhibit file. We'll start with the bare bones and
add browsing controls and styling as we go.

e Save the file as nobelists.html in any folder you choose.

Next, you prepare a data file, in a format Exhibit can read (JSON), containing your data
collection, and save it to the same folder.

Preparing Your Data File in JSON Format
Your data must be structured and formatted so Exhibit can read, publish, filter, sort, and
display the data.

We’ve prepared a sample data file with data about Nobel Prize winners.

Download the sample data file nobelists.js from the demo server at
http://databench.zepheira.com/demos/nobelists/nobelists.js

It will also be available from the Exhibit 3 wiki page:
http://simile-widgets.org/wiki/Exhibit3

Save nobelists.js to the same folder where you saved the HTML file, nobelists.html.

Exhibit looks for your data to be structured in JSON format.

"items" : [

{ "type": "Nobelist",
"label": "Burton Richter",
"discipline™: "Physics",
""shared": "yes",

"last-name": "Richter",

"nobel-year": "1976",

"relationship": "alumni",

"co-winner": "Samuel C.C. Ting",
"relationship-detail™: "MIT S.B. 1952, Ph.D. 1956",
"imageURL":

"http://nobelprize.org/nobel prizes/physics/laureates/1976/richter thumb.jpg"
by

In this sample JSON-formatted data, each Nobel winner’s data is an item, containing a series
of fields such as type, label (or name), discipline, and so on.

Publishing an Exhibit View
Once you've got the HTML and JSON data files, publishing an Exhibit is quite simple.

¢ Go to the directory where you saved the two files: nobelists.html and nobelists.js

(using Explorer on Windows or Finder on Mac).
e Dragnobelists.html into your Web browser.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://simile.mit.edu/wiki/Exhibit/nobelists.js?action=raw
http://databench.zepheira.com/demos/nobelists/nobelists.js
http://simile-widgets.org/wiki/Exhibit3

25

Behind the scenes, Exhibit marries your structured JSON data with the HTML display
template.
e Notice the page displays each Nobelist’s data as listed in the JSON file.

You've published your first Exhibit! You should now see a Web page that shows 63 people's
names and information. So far, it’s a pretty basic display, using the Exhibit’s most basic
display, the List View.

63 MIT-related Nobel Prize Winners

The information within this page has been retrieved from this MIT official source while the thumbnails are included from
Nobelprize.org. Here is the Exhibit JSON data file.

Facets for sorting and browsing controls go here

63 Nobelist

1. Aaron Ciechanover (link)
label: Aaron Ciechanover
type: Nobelist
URI: file:///Users/mwater ... #Aaron%20Ciechanover
modified: no
r Chemistry
yes
Ciechanover
2004
research
MIT postdoctoral researcher 1981-84

imageURL: http://nobelprize.org/nobel_prizes/chemistry/laureates/2004/ciechanover_thumb.jpg
url: http://nobelprize.org/chemistry/laureates/2004/index.htm!

2. Andrew Fire (link)

Exhibit makes it easy to add sorting, filtering, and faceting to your data display.
In the next section, you'll learn different ways to present and sort your data.

You'll also have the chance to adjust the page content. Note the title that says "63 Nobelist"
instead of "63 Nobelists"—you'll fix that later, too.

Facets: Adding Data Filtering, Searching, and Sorting

Your exhibit so far shows a lot of details but in a long list. Next you'll learn how to add
optional facets for filtering or sorting data - all done in the browser without complicated
programming.

Filtering

Looking at each person's entry in the list view, you see several fields such as "discipline"” (the
field in which they won their Nobel prize), "relationship” (how they’re related to MIT),
"shared" (whether they received their prize alone or shared it with others), etc. These fields
provide useful ways to sort and filter the data set.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

26

In the HTML code (nobelists.html) find the text "browsing controls here..." and replace it
with

<div id="top-panels">
<table width="100%"><tr>
<td><div ex:role="facet" ex:expression=".discipline"
ex:facetLabel="Discipline"></div></td>

<td><div ex:role="facet" ex:expression=".relationship"
ex:facetLabel="Relationship"></div></td>
<td><div ex:role="facet" ex:expression=".shared"

ex:facetLabel="Shared?"></div></td>
<td><div ex:role="facet" ex:expression=".deceased"
ex:facetLabel="Deceased?"></div></td>
</tr></table>
</div>

Save the file in your text editor, switch back to your browser, and reload the nobelists.html
file. Now you should see a row of boxes across the top labeled Discipline, Relationship,
Shared, and Deceased. These boxes are called facets—different angles or aspects of the data
that help users analyze the data set.

Notice the gray numbers in front of the values inside these facets. In the facet called
Discipline, the number "2" in front of "Peace" tells you there are 2 people who received the
Nobel Peace prize. Click on "Peace" and the page now shows only those 2 people (rather than
63 people originally).

By adding those HTML div elements as shown above, you’'ve implemented filtering in about
10 seconds. (If you’'ve ever done server-side programming, you might consider how long it
would have taken you to implement filtering using whatever server-side publishing
frameworks you're familiar with.)

You can also add text search to your exhibit by adding a facet of type TextSearch:

<div ex:role="facet" ex:facetClass="TextSearch"></div>

As you type into the search text box, the exhibit gets filtered.

Sorting

Using Exhibit’s basic view, you can already change the sorting order of the Nobelists by
clicking on “sorted by” and choosing “labels”. But if you want to set a specific sorting order at
the beginning - for example, to sort by the discipline and year each person won the prize -
you can change <div ex:role="view"></div> to:

<div ex:role="view" ex:orders=".discipline, .nobel-year"></div>

You can also restrict the properties by which your users can sort by using the
ex:possibleOrders attribute:

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

27

<div ex:role="view"
ex:label="Details"
ex:viewClass="Tile"
ex:showAll="true"
ex:orders=".discipline, .nobel-year"

ex:possibleOrders=".label, .last-name, .discipline, .relationship,
.shared, .deceased, .nobel-year">

</div>
Inspecting Your Data File

So far, you’ve prepared only two files: an .html file and a .js file. One specifies the
presentation of the Web page in HTML and the other stores the data in JSON format.

Open up the file nobelists. js in your text editor and take a look at it. It's written in
the JSON format. There is an array of items (think of them as database records). Each
item looks like this:

{ "type": "Nobelist",
"label": "Horst L. St\uOOF6rmer",
"discipline™": "Physics",
"shared": "yes",
"last-name": "St\uOO0F6rmer",
"nobel-year": "1998",
"relationship": "research",

"co-winner": [
"Robert B. Laughlin",
"Daniel C. Tsui"
I
"relationship-detail": "MIT researcher at MIT Magnet Lab",
"imageURL":
"http://nobelprize.org/nobel prizes/physics/laureates/1998/stormer thumb.jpg"
bo

That's basically a set of properties and property values. For example, the property shared has
the value "yes". Horst L. Stormer won his Nobel prizes with two other people, and so the
property co-winner has two values, which are encoded as elements of an array. That just
means you list the values between [and], separated by commas.

Properties names must be surrounded by double or single quotes.

Note: Exhibit 3.0 is stricter about JSON formatting than prior versions of Exhibit. If you're
seeing errors in JSON data, try using a validator like JSONIint to check your data formatting:
http://jsonlint.com/

Required Data Values

Each item in your data file must have a 1abel property value. (There are exceptions but this
is required for 99% of the cases.) The type property value specifies the type of the item;
otherwise, the item's type defaults to rtem. In our data file, we set the type property to

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://jsonlint.com/

28

Nobelist.

Aside from these few restrictions, you can put pretty much anything into your data file.

How Does Exhibit Work?

The file nobelists.html has a reference to the JavaScript file exhibit-api.js. For Exhibit
3.0 Scripted mode, that's how you include Exhibit. Here's roughly what happens when the
web page is loaded:

* The code of exhibit-api.js isloaded and it automatically pulls in some more
code.

= Alightweight database is created and the data files are loaded into it.

= An Exhibit object is created. It reads the various ex: attributes in the HTML code
to configure its user interface. It then reads data out of the lightweight database
and constructs its user interface

For Exhibit 3.0 Scripted mode, remember that everything happens inside the Web browser.
The user's Web browser loads the entire data set in memory and performs all computation
(sorting, filtering, etc.) locally, which provides much of the power of the Exhibit approach.

Note that so far in this tutorial, you haven’t had to install, configure, or manage a database or
to write a single line of server-side script (in PHP, ASP, JSP, CG], etc.).

Learn More About Staged Exhibit

For Exhibit 3.0 Staged mode, a server handles filtering, sorting, and data manipulation. See
the Exhibit 3.0 Staged documentation for details.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/backstage/wiki

29

Lenses: Styling How Your Exhibit Displays

Right now the information about each Nobelist is displayed in a table showing an item’s
property and value. Exhibit uses lenses to style the HTML displaying your data in the
browser. For example, you might use lenses to show images for each item in an exhibit.

Insert this table inside the div element with the id exhibit-view-panel (either before
or after the inner div element that is already there):

<table ex:role="lens" class="nobelist" style="display: none;"><tr>
<td></td>
<td>
<div ex:content=".label" class="name"></div>
<div>
,
<i ex:content=".nobel-year"></i>

</div>
<div ex:if-exists=".co-winner" class="co-winners">
Co-winners:
</div>
<div ex:content=".relationship-detail” class="relationship"></div>
</td>
</tr></table>

Then, find the style element at the start of the HTML code and change it as follows:

<style>
body {
font-size: 75%;
margin: 0;
padding: O;
font-family: "Lucida Grande","Tahoma", "Helvetica","Arial", sans-
serif;

color: #222;
}
table, tr, td {
font-size: inherit;
}
tr, td {
vertical-align: top;
}
img, a img {
border: none;
}
#fmain-content { background: white; }
#title-panel { padding: 0.25in 0.5in; }
#top-panels {

padding: 0.5em 0.5in;
border-top: lpx solid #BCB79E;
border-bottom: 1lpx solid #BCB79E;
background: #FBF4D3;

}

.exhibit-tileView-body { list-style: none; }
.exhibit-collectionView-group-count { display: none; }

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

30

table.nobelist {

border: lpx solid #ddd;
padding: 0.5em;

margin: 0.5em 0;
display: block;

div.name {
font-weight: bold;
font-size: 120%;

}

.relationship {
color: #888;

}

div.nobelist-thumbnail {

float: left;

width: 13em;

height: 10em;

border: lpx solid #BCB79E;
background: #FOFFFO;

padding: lem;

margin: 0.5em;

text-align: center;

div.nobelist-timeline-lens {
padding: lem;
text-align: center;

}
</style>

Save and reload in the browser. The Nobelists file looks much better, and you've been able to
customize its display to emphasize names and photos for each Nobel winner.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

31

MIT Nobel Prize Winners
63 Nobelist

sorted by: la
™ Aaron Ciechanover
é Chemistry, 2004

P~ Andrew Fire
%’ Medicine/Physiology, 2006

..* ¥ grouped as sorted

2.
7 33 Burton Richter
ﬁ Physics, 1976
3 Co-winners: Samuel C.C. Ting

P Carl E. Wieman
?? Physics, 2001
4. B

W Charles H. Townes
(-' Physics, 1964
5.

What you have just done is specifying an exhibit lens template and some CSS styles. Exhibit
uses a lens template to generate the display for each Nobelist. In the lens template, the
ex:content attribute values specify which item properties Exhibit uses to fill the
corresponding HTML elements. For example,

<div ex:content=".label" class="name"></div>

causes a div element to be generated using the label property value of the Nobelist - the
person’s name.

Adding Images

In addition to generating text, you can also generate images by including an img element and
specifying its src attribute value to be generated, in our example, from the imageURL
property value in the nobelists.js file:

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

32

Customizing Exhibit Attributes

To generate any attribute value in Exhibit, you prepend its name with ex: and append -
content. So if your data file contains a field called publication-date, you can display
those dates in a lens by using

<div ex:content=".publication-date" />

Note that some Nobelists have co-winners recorded in the data file, but not all. (We only have
information about co-winners who are also related to MIT.) For conditional content like this,
you use the ex:if-exists attribute value to include a part of the template conditionally:

<div ex:if-exists=".co-winner" class="co-winners">Co-winners:

</div>

Without the code ex: if-exists, the page would show a lot of "Co-winners:" with nothing in
the data field.

Schema
Properties

In your Web browser, filter the "discipline” facet to show only "Physics", "relationship" to
only "research”, and "shared" to "yes". You should get 5 Nobelists.

Note that the Nobelist, Horst L. Stormer, shared his prize with two others: Robert B. Laughlin
and Daniel C. Tsui. You can readily see Daniel C. Tsui listed with Stéormer, but Laughlin’s data
doesn’t display because he’s not a researcher and has been filtered out.

However, Laughlin does appear in the rendition of Stérmer, so it would be nice to be able to
click on Laughlin's name and get some information about him right there and then. We can
do this by adding some schema to our data, to say that co-winner property values, such as
"Robert B. Laughlin”, actually mean items.

Open the file nobelists.js and modify the beginning so that it looks like this:

{

"properties": ({

"co-winner" : {
"valueType": "item"

}

b,
"items" : [

{ "type": "Nobelist",
"label": "Burton Richter",
"discipline": "Physics",
"shared": "yes",

...the rest of the file...

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

33

Now, open up another browser window (or tab) and drag the file nobelists.js into it and
make sure that the latest version is displayed. If not, hit the browser's Refresh button. Once
that's done, switch to the browser window displaying that HTML file and refresh it. Select the
same filters as above. You should now see that Robert B. Laughlin's name appears in blue
and is underlined. Click on it.

Types

Notice that the number of Nobelists shown on the page is ungrammatical - it reads "5
Nobelist" instead of "5 Nobelists". Modify the beginning of the file nobelists.js as follows:

{

"types": {
"Nobelist™ : {
"pluralLabel": "Nobelists"
}
by
"properties™: {
"co-winner": {
"valueType": "item"

}
}y

...the rest of the file...

Save your data file, switch to the browser window displaying the .js file, and refresh it. Then
switch to the window displaying the .html file and refresh it to see the change.

The key point of this step is that the Web page can look and behave better not just by fine-
tuning the HTML code but also by improving the data.

Thumbnail View

Exhibit offers several different Views to display data. With a series of images and short
descriptors, the Thumbnail View comes in handy for browsing and sorting a data set like
ours.

An exhibit can use several different views. Add this code to nobelists.html after the Lens
table:

<div ex:role="view"

ex:viewClass="Thumbnail"

ex:showAll="true"

ex:orders=".discipline"

ex:possibleOrders=".label, .last-name, .discipline,
.relationship, .shared, .deceased, .nobel-year">

<div ex:role="lens" class="nobelist-thumbnail" style="display:
none; ">

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

34

<div></div>
<diwv>
<span ex:content=".discipline"
class="discipline">,

</div>
</div>

</div>

Save the file and open it in your browser window. The Thumbnail View is quite handy for
showing images and sorting by a particular data field, such as discipline or year.

Timeline View
For data that relates to history or includes time fields, the Timeline Widget adds an
interesting dimension to your exhibit.

The nobelists. s data file lists the years when the Nobelists won their prizes, so we can
plot each one on a time line. To display timelines in Exhibit you need to include a separate
utility, the Timeline widget. The Timeline widget is a bit bulky, so Exhibit doesn't include it
by default. You have to include the time extension to Exhibit. Open the file nobelists.html,
find the reference to exhibit-api.js and add the following script element after it:

<script src="http://api.simile-widgets.org/exhibit/3.0.0rcl/extensions/time/time-
extension.js" type="text/javascript"></script>

Then add this view after the Thumbnail view code block:
<div ex:role="view"
ex:viewClass="Timeline"
ex:start=".nobel-year"
ex:colorKey=".discipline"
ex:bubbleWidth="150"
ex:bubbleHeight="150">
<div ex:role="lens" class="nobelist-timeline-lens" style="display: none;">

<div></div>
<div>

,

</div>

</div>

</div>

Save and reload in the browser. That's it!
Exhibit Timeline View

This view shows the timeline - notice you can toggle to another view by clicking Thumbnails
or Details. Also, note the red flag that appears on the right side of the browsing window, in

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://simile.mit.edu/timeline/

the Exhibit control panel - this Bookmarking tool lets users copy the current URL to save

this view or share it with others.

63 MIT-related Nobel Prize Winners

The information within this page has been retrieved from this MIT official source while the thumbnails are included from

Nobelprize.org. Here is the Exhibit JSON data file.

Discipline Relationship Shared?
Chemistry {missing this field) no
Economics alumni yes
Medicine /Physiology professor
Peace research
Physics staff

THUMBMAILS « DETAILS » TIMELINE

63 Nobelists

Deceased?
{missing this field)
no
yes

@ Aaron Ciechanover @ Richard R. 5chrock
Q @ Robert J. Aumann

Formatting Notes

If you want the timeline and tile views to be stacked up, rather than shown as tabs, remove

the ex:role="viewPanel" attribute to a simple td above the "lens" table.

<td ex:role="viewPanel">.

35

The ex: start attribute value in the code you just inserted specifies which property to use as
the starting date/time, and the ex: colorKey attribute value specifies which property to use

to color-code the markers on the time line.

Final HTML Code

Here is the whole HTML file for this tutorial:

<html>
<head>
<title>SIMILE Widgets | Exhibit |
Winners</title>

Examples | MIT Nobel Prize

<link href="nobelists.js" type="application/json" rel="exhibit-data" />
<script src="http://api.simile-widgets.org/exhibit/3.0.0rcl/exhibit-

api.js"></script>
<script src="http://api.simile-

widgets.org/exhibit/3.0.0rcl/extensions/time/time-

extension.js?bundle=false"></script>
<style>
body {

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

36

font-size: 75%;
margin: 0;
padding: O;
font-family: "Lucida Grande","Tahoma", "Helvetica","Arial",sans-serif;
color: #222;
}
table, tr, td {
font-size: inherit;
}
tr, td {
vertical-align: top;
}
img, a img {
border: none;
}
#main-content { background: white; }
#ftitle-panel { padding: 0.25in 0.5in; }
#top-panels {

padding: 0.5em 0.5in;
border-top: lpx solid #BCB79E;
border-bottom: 1lpx solid #BCB79E;
background: #FBF4D3;

}

.exhibit-tileView-body { list-style: none; }
.exhibit-collectionView-group-count { display: none; }

table.nobelist {

border: lpx solid #ddd;
padding: 0.5em;

margin: 0.5em 0;
display: block;

div.name {
font-weight: bold;
font-size: 120%;

}

.relationship {
color: #888;

}

div.nobelist-thumbnail {

float: left;

width: 13em;

height: 10em;

border: lpx solid #BCB79E;
background: #FOFFFO;

padding: lem;

margin: 0.5em;

text-align: center;

div.nobelist-timeline-lens {
padding: lem;
text-align: center;
}
</style>
<script type="text/javascript">

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

function deceaseRowStyler (itemID, database, tr, rowIndex) {
var deceased = database.getObject (itemID, "deceased"):;

if (deceased == "yes") {
tr.style.backgroundColor = "#£88";
}
}
</script>
</head>
<body>

<div id="main-content">
<div id="title-panel">
<h1>63 MIT-related Nobel Prize Winners</hl>
<p>The information within this page has been retrieved from
<a href="http://web.mit.edu/newsoffice/special/nobels.html"
target=" blank">this MIT official source while the thumbnails are included
from Nobelprize.org. Here
is the Exhibit JSON data file.
</p>
</div>

<div id="top-panels">
<table width="100%"><tr>
<td><div ex:role="facet" ex:expression=".discipline"
ex:facetLabel="Discipline"></div></td>

<td><div ex:role="facet" ex:expression=".relationship"
ex:facetLabel="Relationship"></div></td>
<td><div ex:role="facet" ex:expression=".shared"

ex:facetLabel="Shared?"></div></td>
<td><div ex:role="facet" ex:expression=".deceased"
ex:facetLabel="Deceased?"></div></td>
</tr></table>
</div>
<div ex:role="viewPanel" style="padding: lem 0.5in;">
<table ex:role="lens" class="nobelist" style="display: none;"><tr>
<td></td>
<td>
<div ex:content=".label" class="name"></div>
<div>
<span ex:content=".discipline"
class="discipline">,
<i ex:content=".nobel-year"></i>
</div>
<div ex:if-exists=".co-winner" class="co-winners">
Co-winners:
</div>
<div ex:content=".relationship-detail"
class="relationship"></div>
</td>
</tr></table>

<div ex:role="view"
ex:viewClass="Thumbnail"
ex:showAll="true"
ex:orders=".discipline"
ex:possibleOrders=".label, .last-name, .discipline,
.relationship, .shared, .deceased, .nobel-year">
<div ex:role="lens" class="nobelist-thumbnail" style="display:

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

37

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

none; ">

<div></div>
<div>
<span ex:content=".discipline"
class="discipline">,

</div>
</div>

</div>

<div ex:role="view"
ex:label="Details"
ex:viewClass="Tile"
ex:showAll="true"

ex:orders=".discipline, .nobel-year"
ex:possibleOrders=".label, .last-name, .discipline,
.relationship, .shared, .deceased, .nobel-year">
</div>

<div ex:role="view"

ex:viewClass="Timeline"

ex:start=".nobel-year"

ex:colorKey=".discipline"

ex:bubbleWidth="150"

ex:bubbleHeight="150">

<div ex:role="lens" class="nobelist-timeline-lens"
style="display: none;">

<div></div>
<div>

<span ex:content=".discipline"

class="discipline">,

</div>
</div>
</div>
</div>
</div>
</body>
</html>

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

39

Summary and Next Steps
This tutorial shows you how to start making an exhibit by creating two files:

= An HTML file with formatting and Exhibit codes, nobelists.html
* Your data formatted in a JSON data file, nobelists.js

Then, by adding more code to the HTML file or the JSON file, you make the exhibit Web page
look and behave better—supporting filtering and sorting, providing more views, presenting
items in custom ways, etc. Using the Scripted mode of Exhibit, you can accomplish this
without ever touching a Web server or a database.

To get more involved with Exhibit, explore the online demos, subscribe to the mailing list,
and contribute your expertise to the community.

Exhibit Demos

The Nobelists HTML and JSON files are available on the Exhibit demo server. This example
uses XHTML. To see Exhibit 3.0 running with HTMLS5, see the Senate demo here:
http://databench.zepheira.com/demos/senate/html5.html

The Exhibit demos are a great showcase for a variety of ways you can use Exhibit, both
Scripted and Staged modes. Use them to get ideas, find code samples, and kick-start your
own exhibits.

Developers: Learn More About Exhibit
For software developers who would like to dig into the details of Exhibit coding, see the Exhibit API
doc online: https://ci.zepheira.com/job/test exhibit3/javadoc/index.html.

You can also learn more about customizing and extending Exhibit to add your own widgets
and views.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://databench.zepheira.com/demos/nobelists/nobelists.html
http://databench.zepheira.com/demos/nobelists/nobelists.js
http://databench.zepheira.com/
http://databench.zepheira.com/demos/senate/html5.html
https://ci.zepheira.com/job/test_exhibit3/javadoc/index.html
https://ci.zepheira.com/job/test_exhibit3/javadoc/index.html
https://ci.zepheira.com/job/test_exhibit3/javadoc/index.html

40

Troubleshooting

If your Exhibit code doesn’t display as expected, check these things:

Does your HTML file call the correct data file in the code?
<link href="nobelists.]js” [..]

If you see JSON errors in your browser, double check your data file by running it
through JSONlint or another data validator. Exhibit 3.0 applies stricter JSON standards
than Exhibit 2 did.

[s your script tag pointing to a working installation of Exhibit 3.0? The Exhibit
community hosts a working installation here:
http://api.simile-widgets.org/exhibit/3.0.0rcl/exhibit-api.Js

If the HTML header and title load, but your data does not display, double check the
URL you’re using to call the Exhibit JavaScript. Exhibit needs to be loaded and running
in your Web server.

Open your browser’s error console to check whether Exhibit reported errors that
might help guide you to a solution.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

41

Your Exhibit Data

Publishing an Exhibit calls for an HTML page to display your data plus a data file or location.
This section describes how you format and use data with your exhibits. It also describes
Exhibit data models and expressions.

What’s New in Exhibit 3.0?

There are some notable changes in the way Exhibit handles data in Exhibit 3.0 compared to
previous releases.

Stricter JSON Validation

Exhibit 3.0 has stricter standards for J[SON data validation. For existing Exhibit 2 users, we
suggest you validate your JSON data using JSONLint before publishing exhibits with
Exhibit 3.0.

If your data fails to load, you’ll need to update it to conform to the JSON specification. You can
try to use a one-off extension to upgrade your old JSON for you.

Changes to How Exhibit Works with Babel

The Babel data translation service is no longer integrated in Exhibit. You can still call Babel
to translate your data from one format to another, but you need to supply the Babel URL to
exhibit.

You will need to supply a URL to Babel by appending "babel=<url>" to your exhibit-api.js
script tag.

For more information on Babel, see http://service.simile-widgets.org/babel/.

Note about Babel: The Babel service is not guaranteed to run as a public service indefinitely.
If you rely on Babel translation services (RDF/XML, N3, Excel, an Exhibit page, KML, JPEG,
TSV importers), consider running Babel yourself, downloading the transformed data if you
don't need to actively transform the original, or maintaining the original data in a format that
does not depend on Babel.

rel Usage Note
For Exhibits published using Exhibit 3.0, change <1ink rel="exhibit/data"/>to<link
rel="exhibit-data"/>. The former use is deprecated and will not work at a future date.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://www.jsonlint.com/
https://github.com/zepheira/exhibit3/issues/37
http://service.simile-widgets.org/babel/

42

Usage with HTMLS5

The Exhibit attribute-based configuration has changed for HTML5. A compatibility mode
remains for Exhibits in XHTML files. HTML5 does not support XML namespaces, providing a
new custom attribute mode in its stead.

Moving from Exhibit 2.2.0 in XHTML to Exhibit 3.0 in HTML5 requires changing all attributes
prefixed with ex: to be prefixed with data-ex- instead. In addition, all capital letters within
the attribute name should be converted to a hyphen and lower case, e.g., ex:itemTypes
becomes data-ex-item-types.

The HTML5 data attribute API treats capitalization differently during document processing
and when attribute access occurs, necessitating the change to hyphenation.

Data Export for Scripted Mode: Toolbox Ul Element

Exhibit 3.0 Scripted modifies the toolbox Ul element behavior. Instead of disappearing and
re-appearing based on mouse hovering over a view, the toolbox (“scissors”) are by default
always visible. The former behavior can be reintroduced with a new configuration setting.

HTTP Input and Output (Staged Mode)

The Backstage server for Exhibit 3.0 Staged mode publishes an HTTP+JSON interface to all its
data and functionality. See the HTTP Interface documentation on GitHub for more
information.

With Staged mode, you can invoke HTTP Get on the data link URL to export the entire dataset
in HTML+RDFa format (not the original format), to facilitate search engine indexing.

See the Authoring documentation for Backstage for details on using the data input URL for

Staged exhibits, as well as data export features to help make Exhibit data findable by search
engines.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/backstage/wiki/Http-interface
https://github.com/zepheira/backstage/wiki/Authoring

43

Importing Data Into Your Exhibit

Exhibit 3.0 Staged Mode

Adding data to Exhibit Staged is through HTTP. See the developer documentation about the
HTTP Interface for details on data upload, creating a database either in-memory or on disk,
and more.

Exhibit 3.0 Scripted Mode
There are two basic ways to add data to a Scripted exhibit:
= Use Exhibit’s built-in data importers for data in one of these formats:
. Exhibit JSON

. Google spreadsheet
] Generic JSONP framework
. Babel-Based importing format

You need to specify which importer to use, and for Babel, supply the URL of a
Babel installation (your own or a centrally available Babel service).
Babel-based importers include these input formats:

. BibTeX

. Excel spreadsheet
. Exhibit JSON

. Exhibit page

. JPEG

. N3

. RDF/XML

. Tab-separated values

= Convert your data to JSON manually, with a Babel service or by hand, and then
publish the exhibit calling your JSON file.
Exhibit 3.0 relies on the full JSON standards, which were not fully enforced in
previous versions of Exhibit. Use a JSON validator such as [SONLint to make sure
your JSON is formatted properly.

The following sections offer more details on formatting and importing your data into Exhibit
3.0 Scripted mode.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/backstage/wiki/Http-interface
http://service.simile-widgets.org/babel/
http://www.jsonlint.com/

44

Creating, Importing, and Managing Data
Exhibit's database natively understands data in its own format (a JSON format), but there are
a number of ways to use data in other formats. If you have existing data in another format or
if you prefer another format, you can

(1) Use the Babel service to convert your data into Exhibit's JSON format » Details

(2) Use an importer to convert your files into Exhibit's JSON format on-the-fly » Details

Manually Creating and Managing Exhibit Data
To create and manage data in files in Exhibit's JSON format, you just need a decent text editor (see

the list of recommended tools).

Start by entering this code into your text editor
{
"items":

[

]
}

Save it in the same directory where your web page (HTML file) is stored. Give it a .js or .json
extension (this is optional, done just by convention).

Be careful: note that there are both braces { } and brackets []. Loosely speaking, braces { } are
used to wrap many properties of different names, while brackets [] are used to wrap several things
in a list.

In the code above, your data records, or items in Exhibit's terminology, go in between the brackets.
Here is the same code with three items:

{

"items": [

{ "label": "John Doe",
"type": "Person",
"age": "36",
"likes": "Mary Smith",
"favorite-color": ["blue", "yellow"]

b

{ "label": "Mary Smith",
"type": "Person",
"married-to": "Joe Anderson",
"Job": "Doctor",
"worksAt": "Boston General Hospital",
"hobby": ["painting", "karate"]

b

{ "label": "Boston General Hospital",
"type": "Place",
"city": "Boston"

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://simile-widgets.org/wiki/Exhibit/Creating%2C_Importing%2C_and_Managing_Data
http://simile-widgets.org/wiki/Exhibit/Creating%2C_Importing%2C_and_Managing_Data
http://simile-widgets.org/w/index.php?title=Exhibit/Tools&action=edit&redlink=1

45

Notes:

e This example shows two types of items: Person and P1ace. You can use as many as you
want, and name them however you want. It's your data--you're the boss. Exhibit doesn’t
require you use a global schema for your data.

e [tems of the same type, Person in this case, don't have to have the same properties all
filled in. So, John has age but Mary doesn't. And Mary has job while John doesn't. Etc.
etc. Fill in whatever information you have. You'll get some value of out Exhibit even with
incomplete, messy data.

e The code shown here is neatly formatted and aligned, but it doesn't have to be. You can
manage your file in whatever way suits you, so you won't make mistakes. Your data is your
business.

Data Formatting Notes
Here are some formatting issues to keep in mind when formatting your data:
= Watch out for { } vs. []. Each item in the code above is wrapped in { } while a list of
things like "blue", "yellow" is wrappedin [].
= Watch out for commas. They are used to separate properties within { } and elements of a
list within []. Use commas only where needed. Do not put a comma after the last property
in a pair of { }. Browsers can get very picky about misplaced commas.
= Put quotation marks around all property names, e.g., " job", or "co-author".

Your exhibit can include one or more data files. Each data file can contain any number of
items (or none at all). It can also contain information about types and properties. You can
decide how to split your data among several files.

Converting Data Using Babel

You can use the Babel web service to convert data from various formats into Exhibit's JSON
format.

Babel-Based Importers

Babel-based importers for pulling data into Exhibit include BibTeX, Excel spreadsheet,
Exhibit JSON, Exhibit page, JPEG, N3, RDF /XML, and tab-separated values, or TSV. While
these importers are fully implemented, users must supply a Babel installation URL in their
Exhibit code in order to use Babel’s import service.

To call Babel you need to supply the Babel service’s URL by appending "babel=<url>" to your
exhibit-api.js script tag.

For more information on Babel, see http://service.simile-widgets.org/babel/.

Note about using Babel: The Babel service is not guaranteed to run as a public service
indefinitely. If you rely on Babel translation services (RDF /XML, N3, Excel, an Exhibit page,
KML, JPEG, TSV importers), consider running Babel yourself, downloading the transformed
data if you don't need to actively transform the original, or maintaining the original data in
format that does not depend on Babel.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://simile.mit.edu/babel/
http://service.simile-widgets.org/babel/

46

Babel gives you the option of entering the URLs to your data files, uploading your data files
from your computer, and just simply pasting your data into a text box.

At this time, the two most popular formats we support are BibTeX and Tab-Separated Values
(TSV). While BibTeX is a special treat for the academically inclined (more details here), TSV
is useful for everyone.

If you have data in tab-separated format, you can use Babel to convert the data to JSON and
then load it into Exhibit. Exhibit will not convert your data for you.

Converting Data at Load Time

Exhibit comes with a few importers that can either parse other formats themselves or
convert the data through Babel at a Babel service URL you provide.

To import other formats, specify the following importer types in your Exhibit code:

Excel files: use any of the following
application/msexcel
application/x-msexcel
application/vnd.ms-excel
application/x-excel
application/xls
application/x-xls

RDF /XML files: application/rdf+xml

N3 files: application/n3

BibTeX: applicationl /x-bibtex

If you can manually convert your data through Babel, you should be able to import it
dynamically into your exhibit using this method.

Note that this method slows down your exhibit because your data needs to travel through
Babel first. We recommend that you do this only while developing your exhibit. Once your
exhibit is finished, convert your data manually through Babel, save the result, and link your
exhibit to the converted data instead.

Google Spreadsheet Importer

Refer to How to make an exhibit from data fed directly from a Google Spreadsheet.

JSON Maker (Excel Spreadsheet)

Jon Bogacki has written a macro enabled Excel Spreadsheet to convert Excel spreadsheet
data into Exhibit JSON format: JSON Maker for SIMILE Widgets. The spreadsheet provides a
simple interface to set your data Types and Properties.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://simile-widgets.org/w/index.php?title=Exhibit/How_to_make_a_publications_exhibit&action=edit&redlink=1
http://simile-widgets.org/wiki/How_to_make_an_exhibit_from_data_fed_directly_from_a_Google_Spreadsheet
http://www.jonbogacki.com/
http://www.jonbogacki.com/2010/05/json-maker-for-simile-widgets/

47

Understanding an Exhibit Database

Each exhibit created with Exhibit 3.0 Scripted mode has a database implemented in
JavaScript that stores the exhibit's data and lets other parts of the exhibit query the data they
need. This database is different from traditional (relational) databases that you might be
familiar with, not only because it is implemented in JavaScript but because its data model is
different.

1. Data Models

Different data models are different conceptual ways for describing and dealing with data. For
example, if you were to write George Washington's biography, here are three different data
models you might use:
Write his biography as prose in a book, broken down into chapters but essentially
organized in a sequential manner, intended to be read from start to end.
Write his biography in several web pages, with links between them, so the reader can
travel instantly from one event in Washington’s life to another related event no
matter how far apart in time those events occurred.
Write his biography in a table with several columns, including the names of events,
the times when they happened, locations where they happened, the people involved
or affected, etc., so that the reader can sort, group, and filter the events, or re-visualize
them on time lines and maps.

Different data models are suited for different purposes. Prose might be nice to read a child to
sleep, or to provide commentary and analysis in addition to face. Tables are great for
manipulation of the data, and re-visualization helps to present information in different ways.
You don't need to understand data models too deeply. Just know that different data models
exist and are designed for different purposes.

Exhibit has its own data model, which consists of items, types, properties, and property values.

2. Items

Each Exhibit database contains zero or more items. If it helps, you can think of items as
records in traditional (relational) databases. An item represents something, anything—a
person (Peter Pan), an object (the book called "The DaVinci Code"), a concept (beauty), etc.
It's up to you to decide what constitutes items in your own exhibit.

Identifiers

Each item has a unique identifier (or ID for short) that uniquely identifies the item within the
exhibit. So two different items in an exhibit should have two different IDs - just as any two
different people in the U.S. should have different social security numbers. If you accidentally
assign the same identifier to two items, they will be considered the same by Exhibit.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

48

An identifier is just a string—a short piece of text. There is really no restriction on what text
can make up an identifier, but we would recommend something meaningful to you: "DaVinci
Code", "Peter Pan", and "Beauty" would make good identifiers.

Although items have identifiers, you don't usually deal with identifiers directly. But we want
to mention identifiers first just because we need to talk about them in various places later on.

Labels

In addition to an identifier, each item also has a label that is used to textually label the item in
many cases when Exhibit needs to show the item in the web page.

Labels don't have to be unique. For example, two items (people) with IDs "John Doe #1" and
"John Doe #2" can both have the label "John Doe". In most cases, you can use the same text
for both the label and the ID of an item. In fact, Exhibit automatically assigns an item's label
as its ID if you don't explicitly provide its ID.

3. Types

Each item also has a type. For example, the type of the item identified as "Peter Pan" would
be "Person", the type of "The DaVinci Code" would be "Book", the type of "Beauty" would be
"Concept".

Once again, Exhibit doesn’t place any restriction on what constitutes types in your exhibit.
You make that decision for your own data. Remember our motto for Exhibit: Your data, your
business!

If you don't explicitly assign the type to an item, Exhibit sets the item's type to "Item".
Just like items, types also have IDs, which are just strings, e.g., "Book", "Beauty", and
"Concept". Types also have labels - more on labels later on.

4. Properties and Property Values
Now the fun part begins. Each item can have zero or more properties (otherwise known as
attributes, fields). For example, the item "Peter Pan" would have

A "gender" property

A "member-of-gang" property

The item "The DaVinci Code" would have
An "author" property
A "number-of-copies-sold" property

The property value, or just value for short, of the "gender"” property of "Peter Pan" is "male",
and the value of the "member-of-gang" property of "Peter Pan" is "The Lost Boys". Similarly,
the "author" property value of "The DaVinci Code" is "Dan Brown", and the "number-of-
copies-sold" value is 6,347,343 or however many copies it was sold.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

49

Value Types
Note that while the "gender" property value mentioned, "male", is text, the "number-of-
copies-sold" property value is a number. So, property values can be of different value types:

text "Hello World!"™

number "67.5"

date "2006-12-08", see ISO 8601 format, also see Working with dates
boolean "true" or "false"

url "http://www.google.com/"

item More about this soon

All property values of a property (e.g., "number-of-copies-sold") have the same value type
("number"). It is not possible to say that the "number-of-copies-sold" property value of "The
DaVinci Code" is 6347343 while the "number-of-copies-sold" property value of "Lord of The
Rings" is "so many I can't count” because the first value is a number and the second is text.

Don’t forget to use quotes around property values.

Item Value Type

We noted above that the "author" property value of "The DaVinci Code" is "Dan Brown". It's
OK to consider that property value to be of value type "text", but since Dan Brown is actually
a person, there's more we can do.

We can create another item of type "Person”, with ID "Dan Brown", and with label "Dan
Brown (writer)". And then, we can declare that "author" property values are of value type
"item". When we say the "author"” property value of "The DaVinci Code" is "Dan Brown", we
actually make a relationship between the item "The DaVinci Code" and the item "Dan Brown".
The property value "Dan Brown" is no longer just text, but it identifies another item.

To see this principle demonstrated, examine at the Getting Started with Exhibit example of
MIT Nobel Prize Winners, where the property "co-winner" is changed from a value to an
item.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://en.wikipedia.org/wiki/ISO_8601
http://simile-widgets.org/w/index.php?title=Working_with_dates&action=edit&redlink=1
http://www.google.com/

50

5. Graph-Based Data Model

The relationship between "The DaVinci Code" and "Dan Brown" mentioned previously is
shown as a red arrow in this graph representation of the data:

Y

“The DaVinci Code™ id _\‘ author i/ ‘\I]—dl- “Dan Brown"
label X”“”Tbgr'“ﬁ' label
copies-sold

“The DaVinci Code” 6347343 “Dan Brown (writer)”

Relationships are properties that link items to items. Other properties link from items to text,
numbers, dates, booleans, and URLs. So, the value type of a relationship property is "item".

Note that there are two different concepts of types here: types of items (e.g., "Book",
"Person") and value types of properties (e.g., "number”, "date", "item"). When we say that the
value type of the "author" property is "item", we don't say anything about the types of the
authors themselves. Books can be written by individual people, small groups, large
organizations, or even a faceless, nameless mob.

Although we say that the item "Dan Brown" is an "author" property value of the item "The
DaVinci Code", there should be no implication that somehow the item "Dan Brown" is smaller
or less important a thing than the item "The DaVinci Code". We could have also structured
the properties such that the item "The DaVinci Code" is a "has-written" property value of the
item "Dan Brown" and reversed the red arrow. It doesn't matter to Exhibit which direction
you pick for a relationship, so just pick the direction most natural to you yourself.

Ready to learn more? Go on to Learn how to use expressions in your Exhibit.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://simile-widgets.org/wiki/Exhibit/Expressions
http://creativecommons.org/licenses/by/3.0/

51

Exhibit Expressions

Data in an Exhibit database can be represented as a graph, as in this example:

“The DaVinci Codea™ id —\' author = id “Dan Brown™
label K”“”Tbgr'“f' labal
copies-sold

“The DaVinci Code” 6347343 “Dan Brown (writer)”

Exhibit expressions are used mainly to move along paths through paths and items, such as the path
depicted in the graph. That is, given some nodes in the graph (whether circles/items or
arrows/properties), evaluating an Exhibit expression retrieves other nodes (items or properties) that
are related.

Exhibit moves along such paths by means of expressions. An Exhibit expression consists of a
single path. A path consists of a sequence of one or more property IDs, each preceded by a hop
operator. The . hop operator traverses along an arrow (forward, or away from an originating
circle/item) while the ! hop operator traverses against an arrow (backward, or toward a
circle/item).

For example, given the "The DaVinci Code" item node (the blue circle on the left in the graph
above), evaluating . author. label returns "Dan Brown (writer)". Given the 6347343 value
node, evaluating ! number-of-copies-sold.author returns the item node "Dan Brown"
(that is, you'll get the whole item/object, not just its name). Evaluating ! number-of-copies-
sold.author. id returns the value node "Dan Brown" (the id value, not the item itself).

Here are some more examples. You should be able to imagine for yourself, based on the wording
of the properties, how the data might appear in a graph like the one above:
evaluating .hasAuthor.teachesAt.locatedIn on some papers returns the
locations of the schools where the authors of those papers teach.
evaluating . spouseOf !parentOf on some people returns their parents-in-law.
evaluating ! shot !arrested on John F. Kennedy returns the police officers who
arrested his assassin.

A path can also start with one of a few predefined variables, currently including

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

52

value (referring to the current item or value on which the expression is being evaluated)

and

index (referring to the index of the current item/value in a sequence of items/values)
value is understood if there is no such variable at the beginning of a path. That is, you can also
write . spouseOf !parentOf as value.spouseOf !parentOf.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

53

Authoring Your Exhibits

Authoring an exhibit is as simple as creating an HTML page - you don’t need to learn
programming and can get started by cutting and pasting existing HTML.

This section offers tips on writing the web pages that publish your Exhibits.
Topics include:

= What's New in Exhibit Authoring?

= What's Changed Between Exhibit 2 and Exhibit 3.0?

= Moving Your Exhibits to Exhibit 3.0

= Authoring Overview

= Using HTML5 with Exhibit

= Reference Documentation, Additional Resources, and Demos

Notes on Authoring Exhibits in Staged Mode
Developers working with Exhibit 3.0 Staged mode should also consult the Authoring
documentation on GitHub.

What’s New in Exhibit Authoring?

Essentially, the way you write your Exhibit web files remains the same as in previous
releases. You create an HTML file that calls the Exhibit scripts and points to your Exhibit
JSON data file(s).

But there are a few items you need to note.

Authoring Notes for Exhibit 3.0 Scripted (rc1)

To publish an Exhibit with Scripted mode, you code an HTML exhibit page that
publishes your data. See the Previous Release Comparison documentation for
information on views, facets, and lenses supported in Scripted mode.

Authoring Notes for Exhibit 3.0 Staged (beta)

Creating an exhibit in Exhibit 3.0 Staged also calls for an HTML page that publishes
your exhibit, using data stored in the Backstage server. Note that the Backstage server
doesn’t produce or host your HTML page. As an author, you still need to create and
post your HTML on your own web server.

See the developer documentation on GitHub for details on authoring a Backstage-
hosted Exhibit.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/backstage/wiki/Authoring
https://github.com/zepheira/backstage/wiki/Authoring
https://github.com/zepheira/exhibit3/wiki/Previous-Release-Comparison
https://github.com/zepheira/backstage/wiki/Authoring

54

What’s Changed Between Exhibit 2 and Exhibit 3.0?

Most of the codes and procedures have stayed the same for authoring exhibits. But
there are some important notes for exhibit authors.

The expression language remains the same.
See the Previous Release Comparison documentation for details.

Authoring in HTMLS5 does require some changes to the web page code that publishes
your exhibit. The Exhibit attribute-based configuration has changed for HTML5. See
the HTMLS5 section below for information on authoring an exhibit with HTML5.

Moving Your Existing Exhibits to Exhibit 3.0

Moving a published exhibit from Exhibit 2 to Exhibit 3.0 is fairly simple.

Note: If you're moving a smaller exhibit in Exhibit 2 to take advantage of the scalability
offered by Exhibit 3.0 Staged, you should first upgrade to Exhibit 3.0 Scripted, get used to
the new data validation and functionality changes, and then move from Scripted to Staged
mode.

Move your Exhibit 2 exhibit to Exhibit 3.0 Scripted:

e Inyour HTML file, point the Exhibit script source to the location of Exhibit 3.0

JavaScript.
e Check that your data validates correctly. If you encounter errors, validate your

JSON files at JSONLint.
e Check which features are implemented in Exhibit 3.0 that are used in your HTML

e View your exhibits in your web browser.

If your dataset is large, you'll also want to scale it up by moving from the Scripted to

Staged mode:
e Follow the install and setup instructions for setting up Backstage.

e In your HTML page that publishes the exhibit, point to the data on Backstage. See
the HTTP documentation for Exhibit 3.0 Staged to learn more.

There are significant differences in functionality between the Scripted and Staged
modes of Exhibit 3.0.

For example, Staged mode doesn’t support maps views, timelines or search facets.
See the list of differences between Scripted and Staged mode to check which
features are not yet supported in Staged mode.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/exhibit3/wiki/Previous-Release-Comparison
https://github.com/zepheira/backstage/wiki/Building-Backstage
https://github.com/zepheira/backstage/wiki/HTTP-Interface
https://github.com/zepheira/backstage/wiki/Staged-Compared-to-Scripted

55

* Remove or comment-out views and facets that are not supported in Staged mode.
e Load your Exhibit HTML in a browser to see your Staged exhibit.

Reminder: Backstage does not serve as a Web server. You still need to author an
Exhibit HTML page and host it separately on your Web server.

See additional notes on creating a Staged exhibit in the Backstage documentation on GitHub.

Authoring Overview

You create an exhibit by authoring an HTML page that points to the exhibit scripts (Scripted
mode) or to your Backstage server (Staged mode).

Authoring an exhibit is fairly straightforward:

Create an HTML page that will display your data.

Using HTML5? See the coding notes about HTML5 publishing below.

For Scripted mode, specify the location of your Exhibit scripts.

For example:

<script src="http://yourserver/scripted/dist/exhibit-
api.js?bundle=false"></script>

For Staged mode, you add a data URL. See the Authoring documentation to learn
more.

Exhibit uses the default View to publish your data: Tile View.

Notice the control panel that appears above the Tile View, with clickable icons for
bookmarking this view or exporting your data.

Add Facets to let users sort, search, and filter your data.

Add Lenses to control which parts of your data appear in the exhibit.

Use HTML styles to customize the look and feel of your published exhibit.

See the Getting Started tutorial for detailed, step-by-step instructions on publishing your first
exhibit.

To see the variety of ways you can use Exhibit to publish interactive web pages, look through
the Exhibit demos on the continuous integration server. View the page source to see how the

author uses views, facets for sorting and filtering, and lenses for choosing which data is most
important to feature.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/backstage/wiki
https://github.com/zepheira/backstage/wiki/Authoring
http://www.simile-widgets.org/wiki/Getting_Started
http://databench.zepheira.com/

56

Example Code: Staged Mode

The Encyclopedia of Life example publishes an exhibit with over a hundred thousand items
using the following page code.

The HTML is fairly brief, establishing first a link to the data on backstage with the <script
src="http://backstagel..]> tagand then using a lens to customize the view that publishes
the content. Facets in the sidebar let user sort results by the year it was classified and who
classified it.

Note that the author of an exhibit in Staged mode would load the data on Backstage, and
would also place the exhibit HTML file on his/her own Web server to publish the exhibit.
Backstage does not create or host the exhibit HTML.

See the Encyclopedia of Life demo here:
http://databench.zepheira.com/eol/

<html xml:lang="en" lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ex="http://simile.mit.edu/2006/11/exhibit#">
<head>
<title>Encyclopedia of Life</title>
<link rel="stylesheet" type="text/css" href="style.css" />
<link href="http://backstage.zepheira.com:8181/backstage/data/mem/eocl" rel="exhibit/data"
/>
<script src="http://backstage.zepheira.com:8181/backstage/exhibit/api/exhibit-
api.js?autoCreate=false&postlLoad=true&js=http://backstage.zepheira.com:8181/backstage/api/back
stage-api.js" type="text/javascript"></script>
</head>

<body>
<div id="title-panel">
<hl>Encyclopedia of Life</hl>
<p>This Exhibit 3.0 Staged demo
takes a different look at the Encyclopedia of Life.</p>

</div>
<div id="content">

<div ex:role="lens" class="lens" style="display: none;">
<a ex:href-content=".link" target=" blank">

<div ex:content=".commonName" class="label"></div>
<div ex:content=".name" class="taxon"></div>

<p class="citation">Classified in </p>
</div>

<table width="100%">

<tbody>
<tr valign="top">
<td>
<div ex:role="view"></div>
</td>

<td class="sidebar">

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://databench.zepheira.com/eol/

<div ex:role="facet"
ex:expression=".year"
ex:sortDirection="reverse"
ex:facetLabel="Year Classified"
ex:height="20em"
></div>
<div ex:role="facet"
ex:expression=".classifiedBy"
ex:facetLabel="Classified By"
ex:height="20em"
></div>
</td>
</tr>
</tbody>

</table>
</div>
</body>
</html>

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

57

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

58

Using HTMLS with Exhibit

Many Web authors are moving to HTML5 and Exhibit 3.0 supports the new standard. This
section describes Exhibit coding changes for working with HTML5.

The Exhibit attribute-based configuration has changed for HTML5. A compatibility mode
remains for Exhibits published in XHTML. HTML5 does not support XML namespaces,
providing a new custom attribute mode in its stead.

Moving from Exhibit 2.2.0 in XHTML to Exhibit 3.0 in HTML5 requires changing all attributes
prefixed with ex: to be prefixed with data-ex- instead. In addition, all capital letters
within the attribute name should be converted to a hyphen and lower case, so for example,
ex:itemTypes becomes data-ex-item-types. The HTML5 data attribute API treats
capitalization differently during document processing and when attribute access occurs,
necessitating the change to hyphenation.

Additional Exhibit HTML Authoring Notes

Anything used in a rel attribute has changed from using the / character to the - character.
The / usage is deprecated; it will still work now but will not in the future. This mostly
pertainsto <link rel="exhibit-data" ...>.

HTML Attributes and Exhibit Tags

Exhibit can be invoked to provide some attributes that are found within HTML tags. This is
especially useful in a lens, where data needs to be styled, formatted, or linked.

For example, suppose you are working with the <img. . . > tag, which requires the src
attribute. To have Exhibit provide the content of the src attribute, you use ex: src-
content="...", substituting the ellipses with the proper expression. Here’s an example:

This technique also works for the href attribute that is used with the <a...> tag. Here’s an
example:

<a ex:href-content=".url">Link text

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

59

Additional Resources
Getting Started with Exhibit

Walk step-by-step through the basics of creating an exhibit (Scripted). Learn to add views,
sort and filter with facets, add lenses and styles, and view data in a timeline.

See Getting Started with Exhibit:

http://www.simile-widgets.org/wiki/Exhibit3

Exhibit Reference Documentation
Learn more about coding exhibit HTML pages in the Exhibit Reference doc available on the
documentation wiki.

Developer Documentation
See the developer documentation for Exhibit developers who want to customize or examine
how Exhibit works:

Developer Doc for Exhibit 3.0 Scripted:
https://github.com/zepheira/exhibit3 /wiki

Developer Doc for Exhibit 3.0 Staged:
https://github.com/zepheira/backstage /wiki

How-To Articles

The Exhibit community is very diverse and several exhibit users have written up procedures
and articles for creating a variety of exhibits.

See the Simile Widgets collection of How-To Articles for articles written by authors using
Exhibit and other technologies. You're invited to contribute your own articles, add tips for
working with Exhibit 3.0, and share your expertise with the community.

FAQs

As Exhibit has matured, the community has amassed a store of knowledge on creating and
managing exhibits.

Check the FAQ on the doc wiki to see if someone else has answered your questions already. If

you work through a problem or discover a new way to use a feature, you're encouraged to
add your solution to the FAQ.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://www.simile-widgets.org/wiki/Exhibit3
http://www.simile-widgets.org/wiki/Exhibit3
https://github.com/zepheira/exhibit3/wiki
https://github.com/zepheira/backstage/wiki
http://simile-widgets.org/wiki/HowTo_Articles

60

Exhibit 3.0 Demos

The Exhibit 3.0 software is comprised of two separate components, Scripted for building in-
browser Exhibits, and Staged for larger, server-based Exhibits.

By viewing the page source of Exhibit examples, you can learn how other authors add
interactive elements to their exhibits and make the most of Exhibit’s views, lenses and facets.

See the demos on the continuous integrator to see live examples of Exhibit 3.0 in Staged and
Scripted modes:

Sample Exhibits: Scripted Mode
e Nobelists: live Exhibit
e Senate: live Exhibit
e Senate in HTMLS5: live Exhibit using new HTML5 configuration language

Sample Exhibits: Staged Mode
e The Encyclopedia of Life
e Library of Congress Prints and Photographs
e Sweden Europeana

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://databench.zepheira.com/demos/nobelists/nobelists.html
http://databench.zepheira.com/demos/senate/senate.html
http://databench.zepheira.com/demos/senate/html5.html
http://databench.zepheira.com/eol/
http://databench.zepheira.com/loc-prints/
http://databench.zepheira.com/sweden/

61

Using Views, Facets, and Lenses in Your
Exhibits

With Exhibit, you can add interactive elements to your Web page with just a few tags. This
section shows how to use Exhibit code in your HTML to let users can view and interact with
your data.

Views are ways of looking at collections of items. Every Exhibit uses a view to display your
data. You can add and change views as you like, but your exhibit must use a view.

Facets are the properties of items that you can expose for filtering, sorting or searching on
an exhibit.

Lenses are ways of formatting individual items. Views will show collections of items, often
by invoking lenses to show each item in the collection.

Lenses and facets let you control which items or data properties to display, adding
interactivity to the page. Both views and lenses are optional.

Views and Facets can be restricted to show objects of a certain type by using Collections. See
the developer doc on GitHub for information on customizing your use of views, lenses, and
facets.

For a demo of the Hierarchical view see http://databench.zepheira.com/demos/icd/.

See the feature map showing which views, facets, and lenses are currently supported in
Exhibit 3.0 Scripted and Staged modes.

Views

Every exhibit uses a view to display data. The range of views you can use in authoring your
exhibit depends on whether you're publishing an in-browser exhibit with Scripted mode or a
server-based exhibit in Staged mode.

Exhibit 3.0 Staged:
Exhibit 3.0 Staged mode on Backstage currently supports the Tile View. See the developer
documentation on GitHub for details on how Backstage supports views.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/exhibit3/wiki/Component-Overview
http://databench.zepheira.com/demos/icd/
https://github.com/zepheira/exhibit3/wiki/Previous-Release-Comparison
https://github.com/zepheira/backstage/wiki/Staged-Compared-to-Scripted

62

Exhibit 3.0 Scripted:
Views available in Exhibit 3.0 Scripted mode include Tile, Tabular, Timeline, and Thumbnail.
Map views are under development.

Example Code
This sample code shows a Tabular view for the Exhibit demo showing legislation passing
through the U.S. Senate.

<div ex:role="exhibit-view"

ex:viewClass="Exhibit.TabularView"

ex:label="Table"

ex:columns=".label, .party, .state, .committeeMember.label, !sponsor,
!cosponsor"

ex:columnlLabels="name, party, state, member of, sponsored, cosponsored"
ex:columnFormats="1ist, 1list, 1list, list"

ex:sortColumn="4"

ex:sortAscending="false"

ex:rowStyler="rowStyler">
</div>

Reference Documentation: Views
See the Reference Documentation for details on coding Views for your exhibits:

Views <...ex:role="exhibit-view"...
» Tile View (Default View)
= Tabular View ...ex:viewClass="Tabular"...>
= Timeline View ...ex:viewClass="Timeline"...>
* Thumbnail View ...ex:viewClass="Thumbnail"...>
= Map View ...ex:viewClass="Map"...>
= OpenLayers Map View ...ex:viewClass="OLMap"...>
= Simple Map View ...ex:viewClass="SimpleMap"...>

Developers looking to create customized views for Exhibit 3.0 Scripted mode should see the
developer documentation on GitHub.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://databench.zepheira.com/demos/senate/senate.html
http://databench.zepheira.com/demos/senate/senate.html
http://simile-widgets.org/wiki/Exhibit/Tile_View
http://simile-widgets.org/wiki/Exhibit/Tabular_View
http://simile-widgets.org/wiki/Exhibit/Timeline_View
http://simile-widgets.org/wiki/Exhibit/Thumbnail_View
http://simile-widgets.org/wiki/Exhibit/Map_View
http://simile-widgets.org/wiki/Exhibit/OpenLayers_Map_View
http://simile-widgets.org/wiki/Exhibit/Simple_Map_View
https://github.com/zepheira/exhibit3/wiki/Developer-Scripted-API

63

Views: What’s New in Exhibit 3.0

Toolbox Parameter for Views

In Exhibit 3.0, the semantics of the toolbox parameter for views (ex:showToolbox) have been
unified. All views now have ex:showToolbox, a boolean, set to true by default. The toolbox is
displayed by default, so you don’t need to hover with the mouse to reveal it.

A new parameter (ex:toolboxHoverReveal), a boolean, set to false by default, will restore the
old behavior of hovering to see the toolbox.

Using the New Control Panel Bookmark Widget

Exhibit 3.0 includes a new control panel that appears by default before the first view or panel
showing a bookmark Ul widget. Because the bookmark feature didn’t exist before Exhibit 3.0,
when you move an existing exhibit to Exhibit 3.0 the control panel will appear.

The Exhibit 3.0 bookmarking tool lets user save the current Exhibit URL. The bookmark
widget lets end users open a popup showing a URL they can either bookmark or share with
others, for a permanent link to that view. Note that the bookmark will most likely be quite
long - you might suggest that users run the URL through a shortener like bit.ly.

This section describes the code for the control panel with the new Bookmark UI widget. This
tool appears by default above the first view or view panel in your exhibit.

Here’s the code that controls the control panel:

<div ex:role="exhibit-controlPanel"
ex:showBookmark="[true|false]"
ex:developerMode="[true| false]"
ex:hoverReveal="[true| false]">

ex:showBookmark is true by default. The other settings are false by default.

ex:showBookmark indicates whether to show the bookmark widget. The bookmark widget
lets your exhibit users open a popup showing a URL they can either bookmark or share with
others, for a permanent link to that view. Note that the bookmark will most likely be quite
long - you might suggest that users run the URL through a shortener like bit.ly.

ex:hoverReveal indicates whether the control panel (and the widgets it contains, such as
the scissors icon for exporting data) should be invisible unless hovered over with the mouse.

ex:developerMode indicates whether the control panel will display widgets for developers.
This currently includes a mechanism for resetting the accumulated history a user has for the

Exhibit they're viewing.

To eliminate the control panel from view, you can either give it an ID and use CSS to hide that
ID, or set the ex: showBookmark setting to false.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

64

Facets

An Exhibit Facet lets you restrict the viewable data set to only those items matching the facet
expression and those viable values.

For example, in the sample Senate exhibit, users can choose to see only the senate bills
sponsored by senators from their state, by choosing from the State selector on the right side
of the page. This selector is a facet for sorting and filtering data by state.

Code Example: Facets

<td id="sidebar">

[...]

<div>

ex:facetLabel="State" id="represents-facet"></div>

[...]
</td>

Choosing Facets for Exhibit 3.0 Staged Mode

Exhibit 3.0 Staged mode, built on Backstage, implements the List Facet, though any facet
value with a count of one will be elided. There are some additional considerations for
choosing a facet with exhibits built on Backstage. See the Backstage documentation for
details.

Facets and Exhibit 3.0 Scripted Mode
In Scripted mode, Exhibit 3.0 supports the following Facets for filtering, sorting and
searching data in an exhibit.

See the Reference Documentation for details on using each type of Facet:

Facets <...ex:role="exhibit-facet"...
= List Facet (Default Facet)
= Tag Cloud Facet ...ex:facetClass="Cloud"...>
= Text Search Facet ...ex:facetClass="TextSearch"...>
= Numeric Range Facet ...ex:facetClass="NumericRange"...>
= Alphabetical Range Facet
» Hierarchical Facet ...ex:facetClass="HierarchicalFacet"...>

Developers looking to create customized facets for Exhibit 3.0 Scripted mode should see the
developer documentation on GitHub.

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://databench.zepheira.com/demos/senate/senate.html
https://github.com/zepheira/backstage/wiki/Facet-choice
http://simile-widgets.org/wiki/Exhibit/List_Facet
http://simile-widgets.org/wiki/Exhibit/Tag_Cloud_Facet
http://simile-widgets.org/wiki/Exhibit/Text_Search_Facet
http://simile-widgets.org/wiki/Exhibit/Numeric_Range_Facet
http://simile-widgets.org/w/index.php?title=Exhibit/Alphabetical_Range_Facet&action=edit&redlink=1
http://simile-widgets.org/wiki/Exhibit/Hierarchical_Facet
https://github.com/zepheira/exhibit3/wiki/Developer-Scripted-API

65

Lenses

You use Lenses to customize the display to show only certain parts of a data set or item, and
to customize how the data looks.

Note: Using Lenses with Exhibit 3.0 Staged Mode
Backstage implements a subset of the lens language. Exhibit 3.0 Staged on Backstage
recognizes the following lens attributes:

® if-exists

® *-content

® *-subcontent

® *-style-content

® *-style-subcontent

Customizing Your Exhibit with a Lens

To add a custom lens template your exhibit, add

<div ex:role="exhibit-lens"> ... </div>

Settings include:

setting name type of default [choices |means
value
the item types that should
list of item- be displayed using this lens;
ex:itemTypes type-names (none) if unspecified, this is the
default lens for all item
types
JavaScript to execute JavaScript or
ex:onshow or style (none) change style attributes when
attributes the lens is displayed

The URL of an Exhibit page followed by a hash with the label of an item will display a dialog
box with that item's properties. You can create a lens template for this dialog box to specify
which properties are displayed and how. The lens needs to be inside the body of the HTML
page but outside any view elements, with its display style set to none. For example, this lens
controls what will be displayed in a dialog for a single item of type Person:

<div ex:role="exhibit-lens" ex:itemTypes="Person"
style="display: none">

</div>

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/

66

ex:onshow can be used to execute JavaScript or change style attributes when the lens is
displayed.

Code Example: Lenses

<div ex:role="exhibit-lens" ex:onshow="this.style.background =
'blue';">...</div>

This code causes the lens to always be blue. (Of course you could have just used
style="background: blue".) Use this.getAttribute('ex:itemID") to get the ID of the item. An
elaborate example would include a lens template like this

<div ex:role="exhibit-lens" ex:onshow="preparelLens (this) ;">

<div ex:id-subcontent="tabl-Template:Value">...</div>
<div ex:id-subcontent="tab2-Template:Value">...</div>
</div>
together with some JavaScript like this
function preparelens (elmt) {
var itemID = elmt.getAttribute ("ex:itemID");

var tabl = document.getElementById("tabl-" + itemID);
var tab2 = document.getElementById("tab2-" + itemlID);

About Collections

Collections sit atop the exhibit database as a defined subset of items from within the
database. By adding an exhibit-collection to the page, Exhibit can select items of a certain
type. It can be put right after the body tag for example.

This lets you restrict the items displayed in an exhibit view to a specific item type or types.
For example if you have both President and Event types in your JSON file, you can restrict
your Tabular view (or any other view) to just the President item types using the code below.

<body>
<div ex:role="exhibit-collection" ex:itemTypes="President"></div>

For Multiple Collections Being Presented
You need to give different collections different IDs:

<div ex:role="exhibit-collection" id="typeA-things"
ex:itemTypes="typeA"></div>

<div ex:role="exhibit-collection" id="typeB-things"
ex:itemTypes="typeB"></div>

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {uc]_

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
http://simile-widgets.org/w/index.php?title=Template:Value&action=edit&redlink=1
http://simile-widgets.org/w/index.php?title=Template:Value&action=edit&redlink=1

Then link the views and facets to the right collections:

<div ex:role="exhibit-view" ex:viewClass="Timeline"
ex:collectionID="typeA-things" ...></div>

<div ex:role="exhibit-view" ex:viewClass="Map" ex:collectionID="typeB-
things" ...></div>

Facets can be linked the same way.

Learn more about collections in Exhibit in the developer documentation.

Collections in Exhibit 3.0 Staged

Backstage allows for subsets of the contents of its database to be grouped into collections,
based on the following divisions:

e Allitems (default)
e Only items of one certain rdf : type

Copyright © Massachusetts Institute of Technology and Contributors, 2010-2012 ~ Some rights reserved {nc]_

67

http://web.mit.edu/
http://creativecommons.org/licenses/by/3.0/
https://github.com/zepheira/exhibit3/wiki/Component-Overview

	Exhibit 3.0 Documentation
	What is Exhibit 3.0?
	What’s New in Exhibit 3.0?
	Choosing Between Exhibit 3.0 Scripted and Staged
	Differences in Functionality: Scripted vs. Staged Mode
	Feature Map: What’s Supported in Exhibit 2 and Exhibit 3.0?
	General Notes for Exhibit 2 Users
	Feature Map for Exhibit 3.0 Scripted

	Installing and Setting Up Exhibit 3.0
	Installing Exhibit 3.0 Scripted
	Installing Exhibit 3.0 Staged

	Getting Started with Exhibit 3.0 Scripted
	Schema

	Your Exhibit Data
	What’s New in Exhibit 3.0?
	Importing Data Into Your Exhibit

	Creating, Importing, and Managing Data
	Understanding an Exhibit Database
	Exhibit Expressions

	Authoring Your Exhibits
	Using Views, Facets, and Lenses in Your Exhibits
	Views
	Facets
	Lenses

