
Contents

Exhibit 3.0 Architecture Document
Disclaimer1.
Overview and Objectives2.
Design Philosophy3.
Architectural Design

Exhibit 3.0 Scripted1.
Exhibit 3.0 Staged2.
Data Services3.
Defining the Exhibit 3.0 Staged
Client/Server Interface

Backstage1.
Refine2.

4.

4.

Deployment Model/Overview5.
Feature Definition6.
Use Case View

From Library of Congress1.
From Simile Tools Workshop - June
2010

2.

7.

Glossary of terms8.
Acknowledgement9.

1.

Exhibit 3.0
Architecture
Document

Disclaimer

The following page is a dynamic,
living document designed to be
updated though out the course of the
project. Comments and feedback are
welcomed on the simile-widgets 
discussion list.

Overview and
Objectives

Exhibit enables web site authors to create dynamic exhibits of their collections without
resorting to complex database and server-side technologies. The collections can be
searched and browsed using faceted browsing. Assorted views are provided including
tiles, timelines and maps to name but a few.

Exhibit was originally developed as part of the MIT Simile Project (simile.mit.edu), an
ambitious collaboration of the MIT Libraries, the MIT CSAIL, and the World Wide
Web Consortium (W3C) to explore applications of the Semantic Web to problems of
information management across both large-scale digital libraries and small-scale
personal collections. Exhibit is a light weight application that runs inside a web
broswer and allows web site authors the ability to publish and navigate data via
common Web standards. As a client applications running within a Web browser
however, Exhibit is limited to small-scale collections of data.

The ease in which web site authors can now publish data using Exhibit has
demonstrated that authoring data-interactive sites can be as easy as authoring a static
web page. With the increased interest in data-interactive sites, however, the limitation



of Exhibit for addressing larger collections of data has become a barrier to wider
adoption of this tool, and to the delivery, navigation and reuse of data on the Web.

The Exhibit 3.0 project will redesign and re-implement Exhibit to scale from small
collections to very large data collections. The redesigned Exhibit will be as simple to
use as the current tool but more scalable, more modular, and easier to integrate into a
variety of information management systems and websites—offering an improved user
experience. Further, this project will document, where appropriate, the supporting
Exhibit libraries and APIs to allow 3rd party application developers and others to more
effectively contribute and utilize Exhibit services. The goal of this project will be to
provide libraries, cultural institutions and other organizations grappling with large
amounts of digital content, with an enhanced tool that is scalable and useful for data
management, visualization and navigation.

Design Philosophy

The central objective is to produce a tool capable of widespread deployment for
production use - not as a proof-of-concept/prototype/demonstrator. Thus, although
Exhibit3 builds upon many of the SIMILE project's outputs, it does not represent a
continuation of a research agenda. Rather, it is an attempt to engineer solutions for a
discrete number of limitations in the scalability and extensibility of the current
codebase, using existing, well-understood technical approaches.

The deployability goal also means that Exhibit3 will not necessitate special or
advanced client platform infrastructure beyond what standards-compliant web
browsers offer today. For example, non-standard, or HTML5-specified - but not yet
widely supported - features should not be required for a solution. The production-
readiness also means that there will be a bias in favor of performance, stability, and
maintainability over correctness or completeness of functional scope, where there are
conflicts. While full cross-browser unit testing is outside the scope of this project,
targeted browsers will support jQuery 1.5+ and include Firefox 3+, Chrome 6+, Opera
10+ and Safari 4+ and IE 8+. Additional browsers released during the course of this
work (e.g Firefox 4+, IE9, etc.) will be tested as appropriate. Our goal is to leverage
cross-browser tested javascript and css libraries where applicable to help achieve a
consistent user experience across a wide range of browsers.

Architectural Design

Exhibit will operate in two architecturally separate but related modes, one run entirely



by the user-agent (scripted) the other a client-server model (staged) where the
user-agent primarily deals with user interaction and coordinates what is displayed with
the server. The Exhibit 3.0 scripted client does not require any server backing its
operation and is intended for use with limited size data sets. The following diagram
reflects this architecture.

In both cases, the data Exhibit displays can come from several services, from static
files to cloud-based data warehouses.



Exhibit 3.0 Scripted

In scripted mode, all of the data and the software scripts are transmitted to the
user-agent where the scripts are interpreted and run by the in-browser JavaScript
engine. The displayed data is cached, indexed, and queried in the user-agent, and all
computation after initial transmission is accomplished by the user-agent. This mode
will reflects the current model found in Exhibit 2.0.

This approach is limited by the computational power of the user's computing
environment. Only a limited size data set can be viewed in Exhibit before constraints
on processing power, memory, and user tolerance of performance win out. At that
point, intervention by the creator would be needed to explicitly switch to Exhibit
staged mode.

Exhibit 3.0 Staged

In staged mode, Exhibit behaves as a client / server. The software scripts are
transmitted to the user-agent where they are employed to listen to user actions and
translate them from context into queries to send to the server. The displayed data is
stored, indexed, and queried on the server. Stateless queries received by the server are
computed and responses returned to the querying client which then modifies the
user-agent display accordingly.

This approach is less constrained by the user's computing environment and may still be
performed on older hardware. The server becomes the limiting factor, and as a
stateless, public service must support multiple clients issuing multiple queries
simultaneously over data sets too large for the Exhibit 3.0 scripted in-browser client to
render efficiently.

Data Services

While some Exhibit designers may choose to serve their own curated data sets, in
either mode, both modes may also utilize external data services as a way of staying in
sync with a canonical data source or for bringing disparate data together into one
Exhibit view. Exhibit 3.0 in staged mode, or the Exhibit server (in support of scripted
mode) will read from one or more services using applicable query languages to
communicate.

Defining the Exhibit 3.0 Staged Client/Server Interface



One of the end products of the project will be an agreed contract between client and
server. We examine existing implementations below for ideas on how to proceed.

Backstage

SIMILE Backstage, written by David Huynh to sit atop the SIMILE Butterfly service,
written by Stefano Mazzocchi, came the closest to fulfilling some of the Exhibit 3.0
Project goals during the SIMILE Project. Its architecture is examined below for some
ideas on how Exhibit might be structured.

However, at a high level, it should be noted one of the implicit goals of Backstage was
to incorporate the previous Exhibit software into its structure without rewriting it.
While this was done quite successfully, due in part to David's earlier design decisions,
we have the opportunity to start without such constraints and should take advantage of
it accordingly. For instance, the calls made between the client and server in Backstage
could be abstracted to be the same set of calls in both the staged and scripted client
modes of Exhibit, just implemented differently. Backstage currently brings in the entire
Exhibit code base, then redefines methods to be compatible with Backstage's API;
eliminating previously unavoidable inefficiencies like this would be helpful.

A key interface specification for client-server communication can be found in the 
Backstage repository. All interactions involve an HTTP GET of one server URL with
variable query arguments, one of which is a payload containing all the parameters
specific to the method being invoked.

There are only a handful of defined methods:

Method Description

initialize-session Creates a server-side representation of an Exhibit

add-data-links
To the server-side representation, add all URLs to
data shown in the Exhibit

configure-from-dom
To the server-side representation, add all the
configuration associated with the Exhibit

facet-apply-
restrictions

Calculates and returns the facet listing when a new
constraint is selected in the Exhibit

facet-clear-
restrictions

Calculates and returns the facet listing when
constraints are removed in the Exhibit



generate-lens
Calculates and returns the lens contents after a
change in selection is made

Backstage only defines the list facet and the tile view as proof of concept.

Refine

Differences

Refine's primary strength is in editing, which Backstage and Exhibit don't have.
As collaborative editing is too difficult, we assume single-user usage for
the early versions (whereas Backstage is supposed to be multi-user). This
means the Refine code isn't so rigorous on locking and such.
Editing requires certain operations, like search and replace by regex, that
is not of use in a read-only browser like Exhibit or Backstage.

Refine supports grid-shaped data natively, not graph-shaped data like Backstage
and Exhibit, for performance reason. The implication is that its expression
language does not conveniently support graph traversal as Exhibit's language
does.
Refine currently does not support views and lenses while Backstage does.
Lenses can be tricky to implement.
In Refine, we go easy on the support of the Back button: clicking the Back
button does not undo anything, whereas in Backstage and Exhibit, it should
undo the last view or facet action.
Refine is assumed to run local with very low latency, so its UI components are
allowed to update independently with little fear of them looking out of sync at
any moment. Backstage was intended to run on a server, with high latency, so
updates to its UI components are highly orchestrated so that they don't appear
out of sync. This added complexity to Backstage's UI code.
Refine's backend is supposed to support its own front end only, at the same URL
domain, whereas a Backstage server might serve (through JSONP) embedded
clients in other URL domains. This means Refine can do POSTs and Backstage
is stuck with JSONP GETs (meaning, smaller HTTP payloads traveling on URL
parameters).
Refine is not embedded in some larger site and does not need to worry about
CSS style collision, or conflicts with other ajax frameworks.

David Huynh's review and input especially welcome here; any thoughts comparing
Refine to Backstage also welcome



Google Refine provides "a power tool for working with messy data," with a
purposes slightly different from that of this project's goals. The interface is based on a
tabular representation with facets and other editing and reconciliation tools made
available.

Deployment Model/Overview

The ability to switch between Exhibit 3.0 scripted and staged mode is specified in
HTML and similar to the mechanisms used in Exhibit. An objective of this project is to
be able to leverage the same Exhibit layout and display mechanisms for either mode.

<!-- Example of scripted client invocation -->

<script src="http://api.simile-widgets.org/exhibit/3.0/exhibit-
scripted-api.js" type="text/javascript"></script>
<link href="data.js" type="application/json" rel="exhibit/data" />

<!-- Example of staged client invocation -->

<script src="http://api.simile-widgets.org/exhibit/3.0/exhibit-
staged-api.js" type="text/javascript"></script>
<link href="data.js" type="application/json" rel="exhibit/data" />

The example URIs used for the Exhibit 3 javascript end points are included here for
illustrative purposes. The active Exhibit 3 identifiers along with specifics of the
adaptive parameter variables and permitted values for Exhibit 3.0 staged mode will be
refined and documented over the development phase of this project.

Feature Definition

Note: "Deferred to Later Phase" section will be refined throughout the course of the
project.

1. Scalability

Exhibit was designed as a Web browser widget that stores all of its data in memory, so
it can only handle a small number of items (around 500 to 1,000 depending on the
complexity of the items). Since many Exhibit users have much larger collections that
they want to put in Exhibit, it will be necessary to redesign the tool to support both
small and large collections. The scale of collection that we require for Exhibit 3.0 is



characterized below:

Number of items <=100K
Number of triples <=1m
Number of bytes/triple <=1K
Number of facets <=20
Number of facet values <=2K

DEFERRED TO LATER PHASE:

Scaling to a larger number of items in a specific view (e.g. map, timeline)
Number of item types or horizontal scaling (e.g. to enable link sliding)

Development Discussions and Feature Status: Scalability

2. Extensibility (i.e. new views/facets/widgets)

Exhibit was designed to be a data navigation and visualization framework into which
new views of data (e.g. plot, graph, map, timeline, or a particular facet) could be
added. This process is working but with extreme difficulty, partly because it's not well
explained how to do it, and partly because the code to support this is complex. We
agreed to the following priorities for Exhibit 3.0:

Document the API for writing new view/facets/widgets with clear examples
Make it easier to connect new views/facets/widgets to the framework
Add an API to support result set pagination and/or summarization
Add support for adding/subtracting items from a view/facet/widget
incrementally

THIS PHASE:

Simple list facet (highest priority)
Default list view (highest priority)
Other facets: Tag cloud, search, sliders (Further evaluation required to determine
list in scope for this phase. To be completed as we can manage given timeframes
and depending on current state of code.)
Other views: Map, timeline, and table views (Further evaluation required to
determine list in scope for this phase. To be completed as we can manage given
timeframes and depending on current state of code.)

DEFERRED TO LATER PHASE:



Facets and views from the list above which are not completed in this phase of
work

Development Discussions and Feature Status: Extensibility

3. Persistence

As a Web browser widget, Exhibit allows users to work with the data in memory and
change the local state, for example selecting facets to limit the record set they’re
viewing, or choosing a particular view of the data. Users want to be able to point to the
finished product – the state of the Exhibit that they reached via a set of operations on
the data. We agreed that Exhibit 3.0 should:

Improve permalink (bookmarking) capability for end users to specific views
with state; primarily a documentation issue

DEFERRED TO LATER PHASE:

N/A

Development Discussions and Feature Status: Persistence

4. Modularity (aka “embed-ability”)

Many Exhibit users need to embed Exhibit in a software tool chain and/or a separate
system (e.g. VIVO, Sakai, WordPress). This is possible but difficult to do now, so
Exhibit 3.0 should provide easier ways to call Exhibit modules and address individual
components (e.g. views) in separate web pages.

DEFERRED TO LATER PHASE:

Multiple Exhibits embedded inside of the same page

Development Discussions and Feature Status: Modularity

5. Data indexability/exportability

Exhibit was designed to be dynamic, importing the data and JavaScript code to render
it from a source outside the Web page. This makes it difficult for external service
providers like Google to harvest the data for indexing etc. without extra effort by the
Exhibit author. Furthermore, because its current state is only known to the local Web
browser, it’s difficult to point another user at an Exhibit in a particular state (i.e. offer
Permalinks that take you to exactly what the user is experiencing in their current



session). Both of these should be supported by Exhibit 3.0. Specifically,

Exhibit 3.0 should have the capability of exporting the original dataset (in
pre-JSON encoding, where relevant) via a URL, such that tool chains can extract
data for external processing before or after rendering,and
Offer a permalink for the current state of the Exhibit
Offer a documented way of encoding the data in the HTML (e.g. RDFa) that
supports indexing. In addition, the documentation should explain the existing
ways to support external indexing by search engines (e.g. including the data in a
non-displaying HTML tag in the rendered Exhibit).

THIS PHASE:

Export formats: JSON and CSV
Investigate appropriate solution with search engine providers and W3C's Web
Accessibility Initiative.

DEFERRED TO LATER PHASE:

All other data formats available for export

Development Discussions and Feature Status: Data indexability/exportability

6. Usability

Usability covers a range of behavior of the software. Here we identify some general
goals for Exhibit 3.0 usability in three dimensions:

Latency will be reasonable, e.g. under 10 seconds to render and include a
progress bar
Exhibit authors will still be able to cut and paste existing HTML to create new
Exhibits, and do not need to know programming languages to create simple
customizations.
There will be an easy process to scale from small Exhibits to large ones for the
same dataset as it grows over time. The transition from Web-browser only (i.e.
the current Exhibit) to the server-side version of Exhibit should be simple and
seamless.

DEFERRED TO LATER PHASE:

Formal usability study



Development Discussions and Feature Status: Usability

7. Editing

An ongoing need of Exhibit users, including both data owners who publish their data
with Exhibit and end users who interact with data in Exhibit, is to edit the data directly
in the tool rather than in a separate program that can open the Exhibit data file stored
on the server. We recognize two distinct needs:

Editing “master” data (usually by the data owner) in a way that keeps the
changes permanently.
Editing a copy of the data for local manipulation (e.g. a student working with a
dataset as part of a class assignment) and which does not require persistence to
be handled by Exhibit itself.

We recommend that simple edits (e.g. fixing a typo in a single facet value) should be
handled by an Exhibit widget for editing-in-place with persistence. The MIT CSAIL
Research Assistant will develop prototypes for this, for example the Dido work,
described in detail on the CSAIL website1.

More extensive editing (e.g. fixing all instances of a facet value across a large dataset)
should be done outside of Exhibit, for example using the Gridworks 2 open source
software tool. We did not resolve the question of where how persistence should be
handled for the second case (the data copy) nor how the two cases might interoperate.
Support for end user layout editing, e.g. views or facets, with persistence, is desirable
but out-of-scope for now. For large dataset editing, Exhibit could support single
RESTful writes back to the server but that is not a priority for Exhibit 3.0.

THIS PHASE:

TBD as defined by MIT CSAIL

DEFERRED TO LATER PHASE:

TBD as defined by MIT CSAIL

Development Discussions and Feature Status: Editing

8. Data Pipelining

Exhibit uses a specific set of conventions on top of JavaScript Object Notation (JSON)
as data input, and provides limited data output tools (the "scissors") actuated from the



user interface. In order to integrate more readily with the variety of potential Exhibit
3.0 environments, including LC's target Recollection platform, this project will include
enhancement of data input as well as data output. Currently Zepheira has worked with
LC to integrate a data pipeline based on the Akara open source (Apache 2.0 license)
tool for Recollection. Akara as well as the Simile Babel tool will guide the
architectural guideline for enhanced data pipelining.

There will be an HTTP/REST-based plug-in system for data input to Exhibit 3.0,
similar to the current Babel tool, but with enhanced functionality and API for
extension.
There will be an HTTP/REST-based plug-in system for data output from Exhibit
3.0, including menu updates for user actuation, expanding upon the current
"scissors" concept.

THIS PHASE:

Export formats: JSON and CSV
RESTful endpoint to the data. Not only ability to cut and paste data, but provide
a link that would allow user to access the data. Also provide a link to the entire
data set (not just portion of data set shown) if appropriate.

DEFERRED TO LATER PHASE:

All other data formats available for export
Performance optimizations for accessing the entire data set

Development Discussions and Feature Status: Data Pipelining

Use Case View

Use cases from which the current scope of work was derived pointed to the following
themes:

Scalability

Display: Properly render large data sets (10s of thousands to 100s of thousands
of records) in list view as well as other views such as maps, tables, timelines.

Flexibility for Widgets

Easy to incorporate new widgets



Desire to set preferences on bubble sizes, background colors, titles, zoom ratio
within the widgets for a specific data view

Maintain State:

Maintain the state of a page as user selections are made. Remember these so that
hitting the back button results in a return to this state rather than a return to
defaults.

Data Portability:

Ability to export data from an Exhibit view in multiple formats (JSON,
RDF/XML, delimited text) and/or original format.

The use cases and issue tickets linked below provide more details of requirements as
specified in the context of specific projects.

From Library of Congress

Exhibit limitations discovered during development of Recollection Phase 4

From Simile Tools Workshop - June 2010

MIT FACADE

Sakai

Simile Tools

Zepheira

Each use case needs to be evaluated by its owner and determine whether it can be
shared publicly. Slide decks should be translated to a standard use case format before
sharing.

Glossary of terms

Acknowledgement

This document has benefited from inputs from many members of the Exhibit 3.0
project. Specific thanks are due to Adam Marcus, David Feeney, David Huynh, David
Karger, Edward Benson, Eric Miller, Kathy MacDougall, Mackenzie Smith, Mark
Baker, Richard Rodgers, Ryan Lee, Stefano Mazzocchi and Uche Ogbuji who have



ZExhibit3: Architecture (last edited 2011-04-06 08:39:20 by EricMiller)

provided (or will provide ;) ) valuable contributions to this document.


